

(Accredited by NAAC with A+ Grade with a CGPA of 3.55 out of 4 in the 3rd cycle)

Gandhi Nagar, Vellore – 6.

DEPARTMENT OF CHEMISTRY LESSON PLAN 2020-2021

LESSON PLAN

2020-2021

ODD SEMESTER

PHYSICAL

CHEMISTRY

III B.Sc. -Chemistry - 5 hours /week

Week	Topics	Reference Books
1	Chemical Kinetics: order and molecularity - Methods to determine the rate of the reactions-derivation of rate constants of I, II, III and zero order reactions and examples.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
2	Derivation for time for half change with examples-Methods to determine the order of reactions – Experimental methods in the study of kinetics of reactions- Volumetry, Manometry.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
3	Polarimetry, Dilatometry and Colorimetry Effect of temperature on the rate of reactions — Arrhenius equation and concept of energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
4	Collision theory and derivation of rate constant for bimolecular reactions —Lindemann 's theory of unimolecular reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
5	Theory of Absolute Reaction Rates- thermodynamic derivation for the rate constant for a bimolecular reaction from it-Comparison of Collision theory and ARRT-significance of entropy and free energy of activation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
6	Complex reactions: types - consecutive, parallel and reversible reactions (no derivation, only examples).	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
7	Photochemistry-laws of light absorption and laws of photochemistry-Jablonski diagram-Fluorescence and Phosphorescence.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
8	Primary and secondary reactions – quantum yield - Experimental determination, Eder's and Uranyl oxalate actinometers.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.

9	Kinetics of Hydrogen – Bromine reaction, photolysis of aldehyde-photosensitization-Chemiluminescence. Lasers- uses of lasers.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Jainudeen, Chemical Kinetics and Photochemistry, 1 st Edition, Jazeeme publication, 1982.
10	Phase equilibria – Gibbs phase rule –statement, definition of terms and derivation - applications to one component systems – Water and Sulphur systems.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
11	Thermal analysis and cooling curves – reduced phase rule - Two component system – lead silver system - freezing mixtures - compound formation with congruent melting point.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
12	Zn-Mg system, Ferric Chloride water system - incongruent melting point, Na-K system, CST and effect of impurity on Phenol – Water system.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
		Gurtu, Phase Rule, 2 nd Edition, Pragathi Prakash Publications, 1972.
13	Catalysis-definition-homogeneous catalysis- function of a catalyst in terms of Gibbs free energy of activation. Heterogenous catalysis-Mechanisms of surface reactions.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
14	Simple decompositions on surfaces -Kinetics of unimolecular surface reactions. Enzyme catalysis-Derivation of Michaelis Menton equation.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical

	Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.
Adsorption - physisorption and chemisorption - Freundlich adsorption isotherm - Langmuir adsorption isotherm - BET equation (no derivation) - applications of adsorption.	R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.

I M.Sc. 1 hour/week

KINETICS AND PHOTO

CHEMISTRY

S.No	Topics	Reference Books
1	Partition functions and activated complex-Eyring	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
2	Derivation of rate constant	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
3	Determination of free energy, enthalpy and	Chemical Kinetics by Laidler
	entropy of activation and their significance	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
4	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
5	Potential energy surfaces	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
6	Applications of ACT to reactions in solution -	Chemical Kinetics by Laidler
	effect of pressure	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
7	Effect of dielectric constant -single sphere model	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
8	Effect of dielectric constant -double sphere model	Chemical Kinetics by Laidler

		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
9	Effect of ionic strength on reactions in solution	Chemical Kinetics by Laidler
	g	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
10	Cage effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
11	Kinetic isotope effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
12	Kinetic isotope effect	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
13	Linear free energy relationships—Hammett	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
14	Linear free energy relationships—Hammett	Chemical Kinetics by Laidler
	equation	Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -
15	Linear free energy relationships— Taft equation	Chemical Kinetics by Laidler
		Kinetics
		Kinetics and Mechanisms of
		Chemical Transformations by
		J.Rajaram J.C. Kuriacose -

Auxilium College (Autonomous), Gandhi Nagar, Vellore - 632 006.

Lesson Plan for the year 2020 - 2021

UCCHK16 - ELECTRO CHEMISTRY

Dr.S.Jhancy Mary

Week Portions to be covered Reference Platform (LMS)	Week	Portions to be covered	Reference	Platform (LMS)
--	------	------------------------	-----------	----------------

Week 1	Electrochemistry: Conductance - Metallic and electrolytic conductors - specific, equivalent and molar conductance - Measurement of conductance.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 2	Variation of conductance with dilution for strong and weak electrolytes (qualitative explanation) – Transport number and its determination by Hittorf's method.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom

Week 3	Ionic mobility - determination of ionic mobility – effect of temperature and concentration on ionic mobility, Ionic conductance - Kohlrausch's law and its applications.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 4	Theory of strong electrolytes - Debye – Huckel - Onsager theory-verification of Onsager equation.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 5	Wein effect and Debye Falkenhagen effect-ionic strength - activity and activity coefficients of strong electrolytes.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol	Google Classroom

		Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4th Edition, Goel Publishing House, 1990. B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical	
Week 6	Applications of conductivity measurements – degree of hydrolysis, solubility product and conductometric titrations.	Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 7	EMF: Galvanic cells-reversible and irreversible electrodes and cells - standard cell – working of Weston saturated and unsaturated standard standard cells. EMF and its measurement.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom

Week 8	Types of electrodes - metal-metal ion, gas, metal-metal insoluble salt, amalgam and oxidation-reduction electrodes – electrode reactions-electrode potentials - reference electrodes-standard electrode potentials.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 9	Derivation of Nernst equation for electrode potential and cell emf - sign conventions - electrochemical series and its applications-formation of cells - electrode and cell reactions - cell emf.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 10	Chemical cells and Concentration cells with and without transference – examples and derivation of expressions for their emf's - liquid junction potential.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001.	Google Classroom

		B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	
Week 11	Applications of emf measurements-calculation of ΔG , ΔH , ΔS and equilibrium constants- pH and pKa-buffer solutions and buffer action-Handerson's equations- determination of pH using hydrogen, quinhydrone and glass electrodes.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom
Week 12	Potentiometric titrations- acid –base, redox and precipitation titrations-advantages of potentiometric titrations.	B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008. M.S. Yadav, Electrochemistry, Second Revised Edition, Anmol Publications Pvt. Ltd, New Delhi, 2001. B.K Sharma, Electrochemistry, 4 th Edition, Goel Publishing House, 1990.	Google Classroom

		B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.	
	Applications of Concentration cells -	M.S. Yadav, Electrochemistry,	
Week 13	determination of valency of ions -	Second Revised Edition, Anmol	Google Classroom
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	transport number – ionic product of water - solubility product.	Publications Pvt. Ltd, New Delhi,	
	water solubility product.	2001.	
		B.K Sharma, Electrochemistry,	
		4 th Edition, Goel Publishing House,	
		1990.	
		B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.	
	Polarization - decomposition potential - over voltage.	M.S. Yadav, Electrochemistry,	
Week 14		Second Revised Edition, Anmol	Google Classroom
VV COR I		Publications Pvt. Ltd, New Delhi,	
		2001.	
		B.K Sharma, Electrochemistry,	
		4 th Edition, Goel Publishing House,	
		1990.	
		B. R. Puri, L. R Sharma and M.S Pathania, Principles of Physical Chemistry, 43 rd Edition, Vishal Publishing Co., 2008.	
		M.S. Yadav, Electrochemistry,	
	Storage cells -lead acid battery - mechanism of discharging and	Second Revised Edition, Anmol	
Week 15	recharging-fuel cells – types of fuel	Publications Pvt. Ltd, New Delhi,	Google Classroom
Week 13	cells – Hydrogen – Oxygen fuel cell.	2001.	
		B.K Sharma, Electrochemistry,	
		4 th Edition, Goel Publishing House,	
		1990.	

Lesson Plan for the year 2020 – 2021

PCCH019 - THERMODYNAMICS

1 hour/week

Dr.S.Jhancy Mary

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	Thermodynamics and Mathematical Probability	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 2	Sterling approximation	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 3	Lagrange's method of indeterminate multipliers	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 4	Distribution and most probable distribution	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 5	Distinguishable and Indistinguishable particles	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 6	Statistical Mechanics-Maxwell- Boltzmann distribution law-Derivation and applications	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 7	Bose–Einstein distribution law- derivation and applications	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 8	Fermi –Dirac distribution law- Derivation and applications	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 9	Comparison of the distribution laws	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom

Week 10	Relation between partition and thermodynamic functions	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 11	Different types of ensembles and Ensemble averaging	Statistical Thermodynamics by M.C. Gupta Thermodynamics by Rajaram Kuriacose	Google Classroom
Week 12	Working out of Problems		Google Classroom
Week 13	Working out of Problems		Google Classroom
Week 14	Revision		Google Classroom
Week 15	Revision		Google Classroom

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi

UCCHG16 - Inorganic Chemistry

Week	Portions to be Covered	References	Platform (LMS)
I	Unit I - General characteristics of d block elements and comparative study of Ti and V group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.	Google Classroom – Google Meet
II	Unit I - Comparative study of Cr, Mn and Fe group elements.	Inorganic Chemistry by P. L. Soni and Puri & Sharma.	Google Classroom – Google Meet
III	Unit I - Chemistry of lanthanides and actinides.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
IV	Unit II - Metallurgy and metallurgical processes - general methods of extraction, various concentration, refining and reduction methods.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
V	Unit II - Extraction, properties and uses of Ti, Zr, Pt and Th.	Modern Inorganic Chemistry by R. D. Madan and Advanced Inorganic Chemistry by Cotton and Wilkinson.	Google Classroom – Google Meet
VI	Unit II - Extraction, properties and uses of U. Preparation and uses of ammonium molybdate, vanadium pentoxide, uranium hexa fluoride. Steel alloys - heat treatment of steel.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet

VII	Unit III - Fundamental particles of the nucleus - nucleon terminology, nuclides, isotopes, isobars, isotones, mirror nuclei and isomers.	Essentials of Nuclear Chemistry by H J Arnikar.	Google Classroom – Google Meet
VIII	Unit III - Nuclear forces operating between the nucleons - meson exchange theory and nuclear fluid theory, N/P ratio, curves, stability belts, the whole number rule and packing fraction.	Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.	Google Classroom – Google Meet
IX	Unit III - Natural radioactivity - properties of radioactive rays - radioactive series including neptunium series - group displacement law - rate of disintegration and half-life period.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
X	Unit IV - Nuclear binding energy: Mass defect - simple calculations involving mass defect and B.E per nucleon - magic numbers - liquid drop model - shell model.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar and Elements of Nuclear Chemistry by A. K. Srivastava & P. C. Jain.	Google Classroom – Google Meet
XI	Unit IV - Artificial radioactivity - induced radioactivity - nuclear transmutation reactions.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
XII	Unit IV - Nuclear fission - nuclear energy - nuclear reactors - breeder reactor, nuclear power projects in India, nuclear fusion - thermonuclear reactions - energy source of the sun. and the stars.	Modern Inorganic Chemistry by R. D. Madan, Essentials of Nuclear Chemistry by H J Arnikar.	Google Classroom – Google Meet
XIII	Unit V - Biological importance of Fe, Zn, Mg and Co.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.	Google Classroom – Google Meet

XIV	Unit V - Biological role of Mo, Na, K, Ca and P.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.	Google Classroom – Google Meet
XV	Unit V - Inorganic medicinal chemistry - radio pharmaceuticals, chelate therapy and contrast agents in MRI.	Fundamental Concepts of Applied Chemistry by Jayashree Ghosh and epgpathshala.	Google Classroom – Google Meet

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi UCCHD19 - General Chemistry III

Week	Portions to be Covered	References	Platform (LMS)
I	Unit 5.1 - The Solid State - differences	Principles of Physical	Google Classroom –
	between crystalline and amorphous	Chemistry by B. R.	Google Meet
	solids, elements of symmetry, unit	Puri, L. R Sharma and	
	cell, space lattice, Bravais lattices, law	M.S Pathania.	
	of rational indices and Miller indices.		
II	Unit 5.2 - X - ray diffraction –	Principles of Physical	Google Classroom –
	derivation of the Bragg's equation -	Chemistry by B. R.	Google Meet
	experimental methods - Laue's	Puri, L. R Sharma and	
	method and powder method.	M.S Pathania.	
III	Unit 5.3 - Types of crystals -	Principles of Physical	Google Classroom –
	characteristics of molecular and	Chemistry by B. R.	Google Meet
	covalent crystals.	Puri, L. R Sharma and	
		M.S Pathania.	

IV	Unit 5.3 - Characteristics of metallic	Principles of Physical	Google Classroom –
	and ionic crystals.	Chemistry by B. R.	Google Meet
		Puri, L. R Sharma and	
		M.S Pathania.	
V	Unit 4.1 - Thermodynamics - types of	Principles of Physical	Google Classroom –
	systems - isolated, closed, open,	Chemistry by B. R.	Google Meet
	homogeneous and heterogeneous	Puri, L. R Sharma and	
	systems, phase.	M.S Pathania.	
VI	Unit 4.1 - State of a system, state	Principles of Physical	Google Classroom –
	variables. Thermodynamic	Chemistry by B. R.	Google Meet
	equilibrium - thermal, mechanical and	Puri, L. R Sharma and	
	chemical equilibria, extensive and	M.S Pathania.	
	intensive properties.		
VII	Unit 4.1 - Thermodynamic process	Principles of Physical	Google Classroom –
	and their types - isothermal, adiabatic	Chemistry by B. R.	Google Meet
	and isobaric processes, reversible and	Puri, L. R Sharma and	
	irreversible processes, nature of work	M.S Pathania.	
	and heat.		
VIII	Unit 4.2 - The first law of	Principles of Physical	Google Classroom –
	thermodynamics - concept of internal	Chemistry by B. R.	Google Meet
	energy, statements of I law, state	Puri, L. R Sharma and	
	functions, exact and inexact	M.S Pathania.	
	differentials, the Euler reciprocal		
	relation.		
IX	Unit 4.2 - Enthalpy of a system,	Principles of Physical	Google Classroom –
	enthalpies of vaporization and fusion,	Chemistry by B. R.	Google Meet
	heat capacity of a system -	Puri, L. R Sharma and	
	relationship between C_p and C_v in	M.S Pathania.	
	gaseous systems.		

X	Unit 4.2 - Calculation of w, ΔU, q and	Principles of Physical	Google Classroom –
	ΔH for expansion and compression of	Chemistry by B. R.	Google Meet
	ideal gases under reversible and	Puri, L. R Sharma and	
	irreversible isothermal conditions.	M.S Pathania.	
	Adiabatic expansion - calculation of		
	w, ΔU and ΔH , final temperatures in		
	reversible and irreversible adiabatic		
	expansions.		
XI	Unit 4.2 - Comparison of isothermal	Principles of Physical	Google Classroom –
	and adiabatic expansions, zeroth law	Chemistry by B. R.	Google Meet
	of thermodynamics.	Puri, L. R Sharma and	
		M.S Pathania.	
XII	Unit 4.3 - Thermochemistry - heat of	Principles of Physical	Google Classroom –
7111	reaction, exothermic and endothermic	Chemistry by B. R.	Google Meet
	reactions, relationship between q _p and	Puri, L. R Sharma and	Google Weet
	q _v , standard enthalpy changes of	M.S Pathania.	
	reactions, standard enthalpies of	Title Tuttiuillu.	
	combustion, neutralization and		
	formation.		
XIII	Unit 4.3 - Determination of enthalpies	Principles of Physical	Google Classroom –
	of reactions, variation of enthalpy of	Chemistry by B. R.	Google Meet
	reaction with temperature -	Puri, L. R Sharma and	
	Kirchhoff's equations. Bond energies-	M.S Pathania.	
	definition, calculation and		
	applications of bond energies.		
XIV	Unit 4.4 - The Second law of	Principles of Physical	Google Classroom –
	thermodynamics - need for the second	Chemistry by B. R.	Google Meet
l	I .		

	law, statements of II law, spontaneous	Puri, L. R Sharma and	
	processes.	M.S Pathania.	
XV	Unit 4.4 - Carnot's cycle - efficiency	Principles of Physical	Google Classroom –
	of a heat engine-Carnot's theorem	Chemistry by B. R.	Google Meet
	(statement only).	Puri, L. R Sharma and	
		M.S Pathania.	

Auxilium College (Autonomous), Vellore - 6 Odd Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi PCCHK19 - Molecular Spectroscopy

Week	Portions to be Covered	References	Platform
			(LMS)
I	Unit 3.3 - Mossbauer spectroscopy -	Physical Methods in	Google
	Mossbauer effect, recoilless emission	Inorganic Chemistry by R.S.	Classroom –
	and absorption, Doppler effect.	Drago.	Google Meet
II	Unit 3.3 - Instrumentation, hyperfine	Physical Methods in	Google
	interaction - chemical isomer shift,	Inorganic Chemistry by R.S.	Classroom –
	quadruple interaction and magnetic	Drago.	Google Meet
	splitting.		
III	Unit 3.4 - Interpretation of spectra -	Physical Methods in	Google
	bonding and structures of Fe ²⁺ and Fe ³⁺	Inorganic Chemistry by R.S.	Classroom –
	compounds, Sn ²⁺ and Sn ⁴⁺ compounds and	Drago.	Google Meet
	detection of oxidation states and in-		
	equivalent MB atoms.		

IV	Unit 3.4 - Applications of Mossbauer spectroscopy.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
V	Unit 4.1 - ESR - principle, origin of an EPR signal, derivative spectra.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
VI	Unit 4.1 - g value - factors affecting the magnitude of g values, anisotropy.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
VII	Unit 4.1 - Hyperfine interactions – hyperfine coupling constant, relative intensities of EPR signals, hyperfine splitting in Cu and Mn compounds.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
VIII	Unit 4.2 - Interpretation of the spectra of simple carbon centered free radicals, zero field splitting and Kramer's degeneracy.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
IX	Unit 4.2 - Electron delocalization – Mc Connell's equation, line width in solid state EPR.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
X	Unit 4.2 - Applications of EPR.	Physical Methods in Inorganic Chemistry by R.S. Drago.	Google Classroom – Google Meet
XI	Unit 4.3 - Photoelectron spectroscopy – Photo electric effect, UV and X-ray PES.	Physical Methods in Inorganic Chemistry by R.S. Drago, Spectroscopy by Kaur, epgpathshala.	Google Classroom – Google Meet

XII	Unit 4.3 - Koopmans' theorem, fine structure	Physical Methods in	Google
	in PES, interpretation of photo electron	Inorganic Chemistry by R.S.	Classroom –
	spectra of H ₂ and N ₂ .	Drago, Spectroscopy by	Google Meet
		Kaur, epgpathshala.	
XIII	Unit 4.3 - Interpretation of photo electron	Physical Methods in	Google
	spectra of O ₂ , CO, NO, N ₂ O.	Inorganic Chemistry by R.S.	Classroom –
		Drago, Spectroscopy by	Google Meet
		Kaur, epgpathshala.	
XIV	Unit 4.3 - Interpretation of photo electron	Physical Methods in	Google
	spectra of H ₂ O, azide, HCl and NH ₃ .	Inorganic Chemistry by R.S.	Classroom –
		Drago, Spectroscopy by	Google Meet
		Kaur, epgpathshala.	
XV	Unit 4.4 - Electron Spectroscopy for	Physical Methods in	Google
	Chemical Analysis – applications of ESCA.	Inorganic Chemistry by R.S.	Classroom –
		Drago, Spectroscopy by	Google Meet
		Kaur, epgpathshala.	

Auxilium College (Autonomous), Vellore - 6 Even Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi

UCCHJ16 - Coordination Chemistry

Week	Portions to be Covered	References	Platform (LMS)
I	Unit I - Co-ordination compounds: Definition of terms used - classification of ligands - chelation and effect of chelation - applications - co- ordination number and stereochemistry of complexes.	Coordination Chemistry by M. Satake Y. Mido, Coordination Chemistry by Gurdeep Chatwal and M. S. Yadav, Concise Coordination Chemistry by R Gopalan and V Ramalingam.	Google Classroom – Google Meet
II	Unit I – Nomenclature of Coordination compounds.	Coordination Chemistry by M. Satake Y. Mido.	Google Classroom – Google Meet
III	Unit I - Isomerism in complexes – conformation isomerism, ionization isomerism, hydrate isomerism, linkage isomerism, ligand isomerism, coordination isomerism, co-ordination position isomerism, polymerization isomerism, geometrical and optical isomerism in 4 and 6 co-ordinated complexes.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
IV	Unit II - Theory of coordination compounds - Werner theory and its experimental verifications.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet

	T		
V	Unit II - Sidgwick theory - EAN rule-limitations.	Modern Inorganic Chemistry by R. D. Madan and Advanced Inorganic Chemistry by Cotton and Wilkinson.	Google Classroom – Google Meet
VI	Unit II - Theory of bonding - Valence bond theory – hybridization, geometry and magnetic properties – failures of VBT.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
VII	Unit III - Crystal Field theory – Factors affecting the magnitude Δ o - spectro chemical series - splitting of d – orbitals in octahedral, tetrahedral and square planar complexes.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
VIII	Unit III - Crystal field stabilization energy - Calculation of CFSE in octahedral and tetrahedral complexes - low spin and high spin complexes.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
IX	Unit III - Explanation of magnetic properties and colour using CFT. Comparison between VBT and CFT.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
X	Unit IV - Covalency in transition metal complexes: Evidences for covalency. Molecular Orbital theory: Metal orbitals and elementary idea, ligand orbitals suitable for σ and π bonding in octahedral Geometry.	Modern Inorganic Chemistry by R. D. Madan and Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.	Google Classroom – Google Meet
XI	Unit IV - Construction of qualitative MO energy level diagram for σ - bonding in octahedral geometry. Effect of π bonding on the value of Δ o.	Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.	Google Classroom – Google Meet

XII	Unit IV - Relationship between π bonding ability of ligands and spectrochemical series, Comparison between CFT and MO theories.	Selected Topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli and R. D. Madan.	Google Classroom – Google Meet
XIII	Unit V - Pi acceptor ligands: Syntheses, properties of carbonyls of Ni, Cr, Fe.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
XIV	Unit V - Syntheses, properties of carbonyls of Co, Mn, W and Mo.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet
XV	Unit V - bonding, hybridization and structures of carbonyls of Ni, Cr, Fe, Co, Mn, W and Mo.	Modern Inorganic Chemistry by R. D. Madan.	Google Classroom – Google Meet

Auxilium College (Autonomous), Vellore - 6 Even Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi UCCHE19 - General Chemistry IV

Week	Portions to be Covered	References	Platform (LMS)
I	Unit 5.1 - Entropy – the concept of entropy, entropy changes in isothermal expansion of an ideal gas, in reversible and irreversible processes, entropy change accompanying change of phase.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
II	Unit 5.1 - Calculation of entropy changes with changes in T, V, and P, entropy changes in different processes, entropy of a mixture of ideal gases, entropy of mixing, physical significance of entropy.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet

III	Unit 5.2 - Helmholtz and Gibbs free energy functions, variation of free energy change with T and P.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
IV	Unit 5.2 - Maxwell's relations, criteria for reversible and irreversible processes, Gibbs-Helmholtz equation.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
V	Unit 5.3 - Partial molar properties – concept of chemical potential, the Gibbs-Duhem equation, variation of chemical potential with temperature and pressure.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
VI	Unit 5.3 - Chemical potential in a system of ideal gases, Clausius-Clapeyron equation – applications.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
VII	Unit 5.4 - Third law of thermodynamics - Nernst heat theorem, statement of third law.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
VIII	Unit 5.4 - Determination of absolute entropies of solids, liquids and gases, residual entropy.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania.	Google Classroom – Google Meet
IX	Unit 4.1 - Alcohols - reactions of alcohols with Na, HX, esterification, oxidation with alk. KMnO ₄ , acidic	Textbook of Organic Chemistry, P.L. Soni and H.M. Chawla and	Google Classroom – Google Meet

X	dichromate, con HNO ₃ , catalytic dehydrogenation. Unit 4.2 - Dihydric alcohol-glycol-	Advanced Organic Chemistry by Bahl and Arun Bahl. Textbook of Organic	Google Classroom –
A	preparation, properties and uses,	Chemistry, P.L. Soni and H.M. Chawla and Advanced Organic Chemistry by Bahl and Arun Bahl.	Google Meet
XI	Unit 4.2 - Trihydric alcohol – Glycerol- preparation, properties and uses.	Textbook of Organic Chemistry, P.L. Soni and H.M. Chawla and Advanced Organic Chemistry by Bahl and Arun Bahl.	Google Classroom – Google Meet
XII	Unit 4.3 - Ethers- isomerism, preparation by Williamson synthesis.	Textbook of Organic Chemistry, P.L. Soni and H.M. Chawla and Advanced Organic Chemistry by Bahl and Arun Bahl.	Google Classroom – Google Meet
XIII	Unit 4.3 - Reactions of ethers.	Textbook of Organic Chemistry, P.L. Soni and H.M. Chawla and Advanced Organic Chemistry by Bahl and Arun Bahl.	Google Classroom – Google Meet

XIV	Unit 4.4 - Epoxides- preparation from	Textbook of Organic	Google Classroom –
	alkene, ring opening reactions.	Chemistry, P.L. Soni	Google Meet
		and H.M. Chawla and	
		Advanced Organic	
		Chemistry by Bahl and	
		Arun Bahl.	
XV	Unit 4.4 - Reaction with alcohol,	Textbook of Organic	Google Classroom –
	ammonia derivative and LiAlH ₄ .	Chemistry, P.L. Soni	Google Meet
		and H.M. Chawla and	
		Advanced Organic	
		Chemistry by Bahl and	
		Arun Bahl.	

Auxilium College (Autonomous), Vellore - 6 Even Semester Lesson Plan 2020-2021

Dr. J. Rosaline Ezhilarasi

PCCHE20 – Advanced Coordination Chemistry

Week	Portions to be Covered	References	Platform
			(LMS)
I	Unit 2.1 - CFT - salient features of CFT,	Concise Coordination	Google
	crystal field splitting of d-orbitals in	Chemistry by R. Gopalan,	Classroom –
	octahedral complexes.	Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	

II	Unit 2.1 - Factors affecting the magnitude of	Concise Coordination	Google
	$\Delta_{ m o}$,	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
III	Unit 2.1 - Crystal field splitting of d-orbitals	Concise Coordination	Google
	in tetrahedral, tetragonal and square planar	Chemistry by R. Gopalan,	Classroom –
	complexes.	Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
IV	Unit 2.2 - Consequences of CF splitting -	Concise Coordination	Google
	formation of high-spin and low-spin	Chemistry by R. Gopalan,	Classroom –
	complexes.	Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
V	Unit 2.2 - Distribution of d-electrons.	Concise Coordination	Google
		Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
VI	Unit 2.3 - CFSE - calculation of CFSE for	Concise Coordination	Google
	various d systems in O _h and T _d fields.	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	

VII	Unit 2.3 - Uses of CFSE values,	Concise Coordination	Google
		Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
VIII	Unit 2.3 - Applications of CFT, limitations.	Concise Coordination	Google
		Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
IV	Heir 2.4. Libra Tallan distraction of the control	Canalas Casalinatias	Carala
IX	Unit 2.4 - Jahn-Teller distortion - theorem, z-in and z-out cases.	Concise Coordination Chemistry by R. Gopalan,	Google Classroom –
	in and 2 out cases.	Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
X	Unit 2.4 - Causes and consequences of Jahn-	Concise Coordination	Google
	Teller distortion.	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic Chemistry by Wahid U.	Google Meet
		Malik, G. D. Tuli, R. D.	
		Madan.	
XI	Unit 2.5 - MOT - experimental evidences for	Concise Coordination	Google
	metal-ligand covalent bonding in complexes,	Chemistry by R. Gopalan,	Classroom –
	σ -bonding in O_h complexes.	Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	

XII	Unit 2.5 - Construction of MO diagrams.	Concise Coordination	Google
		Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
XIII	Unit 2.6 - Pi-bonding in O _h complexes, effect	Concise Coordination	Google
	of π -bonding on the value of Δ_0 .	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
XIV	Unit 2.6 - Relation between pi bonding	Concise Coordination	Google
AIV			
	ability of ligands and spectrochemical series,	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	
XV	Unit 2.6 - Comparison of CFT with MOT.	Concise Coordination	Google
71 7	ome 2.5 Comparison of Cr 1 with WO1.	Chemistry by R. Gopalan,	Classroom –
		Selected Topics in Inorganic	Google Meet
		Chemistry by Wahid U.	
		Malik, G. D. Tuli, R. D.	
		Madan.	

Auxilium College (Autonomous), Vellore - 6

Dr. J. Rosaline Ezhilarasi, Lesson Plan, 2020-2021

PRACTICAL II: UCCHF19 - VOLUMETRIC ESTIMATION

Week	Portions to be Covered	References	Platform (LMS)
I	Introduction to Volumetric Estimation – terms involved – principle.	-	Google Classroom – Google Meet
II	Volumetric Estimation – introduction to apparatus – handling procedure – calculation.	-	Google Classroom – Google Meet
III	Estimation of NaOH – principle involved – procedure – calculation – assignment on writing the procedure in the observation note book.	Lab Manual	 Google Meet Google Classroom
IV	Estimation of Borax – principle involved – procedure – calculation – assignment on writing the procedure in the observation note book.	Lab Manual	 Google Meet Google Classroom
V	Estimation of Oxalic acid – principle involved – procedure – calculation – assignment on writing the procedure in the observation note book.	Lab Manual	 Google Meet Google Classroom
VI	Estimation of Sodium nitrite – principle involved – procedure – calculation – assignment on writing the procedure in the observation note book.	Lab Manual	 Google Meet Google Classroom
VII	Estimation of Copper – principle involved – procedure – calculation –	Lab Manual	1. Google Meet

	assignment on writing the procedure		2.	Google
	in the observation note book.			Classroom
	in the observation note book.			Classiooni
VIII	Estimation of Potassium dichromate –	Lab Manual	1.	Google Meet
	principle involved – procedure –		2.	Google
	calculation – assignment on writing			Classroom
	the procedure in the observation note			
	book.			
IX	Estimation of Magnesium – principle	Lab Manual	1.	Google Meet
	involved – procedure – calculation –		2.	Google
	assignment on writing the procedure			Classroom
	in the observation note book.			
X	Estimation of Ferrous ion – principle	Lab Manual	1.	Google Meet
71	involved – procedure – calculation –	Lao Manaai	2.	Google
	_		۷.	Classroom
	assignment on writing the procedure			Classroom
	in the observation note book.			
XI	Estimation of Chloride in neutral	Lab Manual	1.	Google Meet
	medium – principle involved –		2.	Google
	procedure – calculation – assignment			Classroom
	on writing the procedure in the			
	observation note book.			
XII	Estimation of Calcium – principle	Lab Manual	1.	Google Meet
	involved – procedure – calculation –		2.	Google
	assignment on writing the procedure			Classroom
	in the observation note book.			
XIII	Determination of percentage of	Lab Manual	1.	Google Meet
	Manganese dioxide in Pyrolusite –		2.	Google
	principle involved – procedure –			Classroom
	calculation – assignment on writing			C10551 00111
	calculation – assignment on writing			

	the procedure in the observation note book.			
XIV	Estimation of alkalinity of a water	Lab Manual	1.	Google Meet
	sample – principle involved –		2.	Google
	procedure – calculation – assignment			Classroom
	on writing the procedure in the			
	observation note book.			
XV	Estimation of temporary and	Lab Manual	1.	Google Meet
	permanent hardness of water -		2.	Google
	principle involved – procedure –			Classroom
	calculation – assignment on writing			
	the procedure in the observation note			
	book.			

AUXILIUM COLLEGE (AUTONOMOUS) VELLORE – 6.

LESSON PLAN 2020-2021

UCCHH16

Organic Chemistry

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
I	4	I	Stereoisomerism: Optical isomerism - Projection formulae: Fischer, Flying wedge, Sawhorse and Newmann projection formulae- Cahn - Ingold - Prelog rules - R-S notations for optical isomers with one and two asymmetric carbon atoms.	Chalk and Board, Group discussion	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms - Tewari	Group discussion and Written test
II	4	I	Optical activity in compounds not containing asymmetric carbon atoms — Biphenyls (atropisomerism), allenes and spiranes	Chalk and Board, Group discussion	Reaction and reagents – O.P.Agarwal Organic Stereochemistry-Tewari	Group discussion and Written test

			Geometrical isomerism: Cis - trans, syn – anti and E-Z notations		Organic Reaction Mechanisms - Tewari	
III		I	isomerism in maleic and fumaric acids and unsymmetrical ketoximes – methods of distinguishing geometrical isomers using melting point, dipole moment, dehydration, cyclisation and heat of combustion and hydrogenation.	Chalk and Board, Group discussion	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms - Tewari	Group discussion and Written test
IV	4	II	Tautomerism: Definition- keto- enol tautomerism (identification, acid and base catalysed mechanisms, preparations and characteristics), nitroacinitro tautomerism and amido-imido tautomerism.	Chalk and Board, Group discussion	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari	Quiz
V	4	П	Conformational analysis: Conformational analysis of ethane and n- butane	Chalk and Board, Group discussion	Reaction and reagents – O.P.Agarwal	Quiz

			including energy diagrams — conformers of cyclohexane — axial and equatorial bonds — ring flipping showing axial equatorial inter conversions		Organic Stereochemistry- Tewari Organic Reaction Mechanisms - Tewari	
VI	4	II	conformers of mono and di substituted cyclohexanes – 1:2 and 1:3 interactions	Chalk and Board, Power point	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms - Tewari	Quiz
VII	4	III	Active methylene group – Characteristic reactions of active methylene groups in Malonic, Acetoacetic and cyano acetic esters and their synthetic uses.	Chalk and Board, Power point	Reaction and reagents – O.P.Agarwal Organic Stereochemistry- Tewari Organic Reaction Mechanisms – Tewari	Group discussion and Written test
VIII	4	III	Organic photochemistry: Carbonyl polarization — Reactivity of carbonyl group - acidity of alpha hydrogen. Photochemistry of carbonyl compounds	Chalk and Board, Power point	Reaction and reagents – O.P.Agarwal Organic Stereochemistry- Tewari	Group discussion and Written test

					Organic Reaction	
					Mechanisms -	
					Tewari	
IX	4	III	Norrish type I and II	Chalk and Board,	Reaction and	Group discussion
			reactions. Photo	Powerpoint	reagents –	and Written test
			reduction, addition and isomerization.		O.P.Agarwal	
					Organic	
					Stereochemistry-	
					Tewari	
					Organic Reaction	
					Mechanisms –	
					Tewari	
X	4	IV	Reaction	Chalk and Board,	Reaction and	Seminar
			Mechanisms:	Seminar	reagents –	
			Mechanism of Aldol,		O.P.Agarwal	
			Benzoin and Darzen		Organic	
			condensation—		Stereochemistry-	
			Claisen, Cannizaro, Reformatsky,		Tewari	
					Organic Reaction	
					Mechanisms -	
					Tewari	
XI	4	IV	Perkin, Knoevenagal,		Reaction and	Seminar
			Michael addition,	Board,Seminar	reagents –	
			haloform, Dakin,		O.P.Agarwal	
			Wittig and Dieckmann reactions.		Organic	
			Dicermann reactions.		Stereochemistry-	
					Tewari	
					Organic Reaction	
					Mechanisms –	
					Tewari	

XII	4	IV	Mechanism of reduction with sodium borohydride, LiAlH4, Wolf Kishner and MPV reduction.	Chalk and Board, Seminar	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms - Tewari	Seminar
XIII	4	V	Molecular rearrangements: Classification as anionotropic — cationotropic and inter molecular — intra molecular. Pinacol-Pinacolone rearrangement Beckmann	Chalk and Board, Group discussion	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms — Tewari	Quiz
XIV	4	V	Claisen rearrangement (sigmatropic), Paraclaisen rearrangement, Favorskii rearrangements, Fries rearrangements (two mechanisms),	Chalk and Board, Group discussion	Reaction and reagents — O.P.Agarwal Organic Stereochemistry-Tewari Organic Reaction Mechanisms - Tewari	Quiz
XV	4	V	Benzidine rearrangement. (Mechanism, evidence for carbonium ion intermediate formation – migratory attitude – inter / intra molecular rearrangement)	Chalk and Board, Group discussion	Reaction and reagents – O.P.Agarwal Organic Stereochemistry- Tewari	Quiz

Organic Reaction Mechanisms - Tewari	
Tewari	

PCCHJ19

SYNTHETIC ORGANIC CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
I	2	I	Retrosynthesis, disconnection approach, synthons, linear and convergent Synthesis	Chalk and Board, Group discussion	Disconnection Approach- Stuart Warren	Group Discussion and written test
II	2	I	One group C-X disconnection and two group C-X disconnection. Umpolung of reactivity	Chalk and Board, Group discussion	Disconnection Approach- Stuart Warren	Group discussion and written test
III	2	I	Protection of functional groups (hydroxyl, amino, carbonyl and carboxyl groups).	Chalk and Board, Group discussion	Disconnection Approach- Stuart Warren	Group discussion and written test
IV	2	I	Synthesis of target molecules based on disconnection and synthon approach - Asprin, 3- methyl-1- pentane, methyl - 3- phenyl butanoate	Chalk and Board, power point	Disconnection Approach- Stuart Warren	Quiz

V	2	I	Cis - 1- isopropyl -2- benzyl ethylene and 2,6 dibromoaniline, reserpine,	Chalk and Board, power point	Disconnection Approach- Stuart Warren	Quiz
VI	2	I	Saccharine, paracetamol, morpholine.	Chalk and Board, Power point	Disconnection Approach- Stuart Warren	Quiz
VII	2	II	Prostereoisomerism- prochirality, topicity of ligands and faces- homotopic, heterotopic and enantiotopic.	Chalk and Board, Power point	Advanced Organic Chemistry by Clayden & Greeves	Group Discussion and written test
VIII	2	II	Asymmetric synthesis, chiral auxiliaries, methods of asymmetric induction, substrate	Chalk and Board, Power point	Advanced Organic Chemistry by Clayden & Greeves	Group discussion and written test
IX	2	II	Reagent and catalyst controlled reactions-Examples.	Chalk and Board, Power point	Advanced Organic Chemistry by Clayden & Greeves	Group discussion and written test

X	2	II	Determination of enantiomeric and diastereomeric excess, enantiodiscrimination.	Chalk and Board, Power point	Advanced Organic Chemistry by Clayden & Greeves	Seminar
XI	2	II	Methods of resolution-mechanical separation, formation of diastereomers,	Chalk and Board, seminar	Advanced Organic Chemistry by Clayden & Greeves	Seminar
XII	2	II	Chromatography and biochemical transformation	Chalk and Board, seminar	Advanced Organic Chemistry by Clayden & Greeves	Seminar
XIII	2	V	Chemoselectivity – reduction and oxidation-examples, calculation.	Chalk and Board,Group discussion	Organic synthesis by Puneet Karnard	Quiz
XIV	2	V	Regioselectivity- Birch reduction. Stereoselectivity – Principle	Chalk and Board, Group discussion	Organic synthesis by Puneet Karnard	Quiz
XV	2	V	Diastereoselective reaction – hydroboration (formation of an alcohol).	Chalk and Board, Group discussion	Organic synthesis by Puneet Karnard	Quiz

UCCHA20

General Chemistry I

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
I	2	I	Valency, oxidation number, oxidation and reduction in terms of oxidation number, calculation of oxidation state - acids, bases, salts, oxidizing and reducing agents. Oxidation, reduction and redox reactions (definition and examples)	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Group Discussion and written test
П	2	I	Oxidising and reducing agents (definition and examples). Balancing chemical equations - oxidation number method.	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Group discussion and written test

III	2	I	Balancing chemical equations - ion electron method.	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Group discussion and written test
IV	2	II	Modern periodic law, general classification of elements in periodic table, general characteristics of s, and p block elements	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Quiz
V	2	I	General characteristics of d and f block elements	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Quiz
VI	2	IV	Acids and Bases- concepts- Arrhenius, Lowry-Bronsted and Lewis acid – base theory, acid- base equilibria,	Chalk and Board, Models	Physical Chemistry – Puri and Sharma	Quiz
VII	2	IV	Definition of pH of strong and weak acid solutions, calculation.	Chalk and Board, Group discussion	Physical Chemistry – Puri and Sharma	Group Discussion and written test
VIII	2	IV	Hard and soft acids and bases – definition	Chalk and Board, Group discussion	Physical Chemistry – Puri and Sharma	Group discussion and written test

IX	2	IV	Buffer solutions, relative strength of acids and bases from Ka and K _b values	Chalk and Board, Group discussion	Physical Chemistry – Puri and Sharma	Group discussion and written test
X	2	IV	Henderson- Hasselbalch equations.	Chalk and Board, Seminar	Physical Chemistry – Puri and Sharma	Seminar
XI	2	V	Common ion effect, concept of sparingly soluble salts,	Chalk and Board, seminar	Practical Chemistry – O.P Pandey	Seminar
XII	2	V	Solubility product principle, relation between solubility and solubility product.	Chalk and Board, seminar	Practical Chemistry – O.P Pandey	Seminar
XIII	2	V	Application of common ion effect and solubility product principle in inorganic qualitative analysis,	Chalk and Board,Group discussion	Practical Chemistry – O.P Pandey	Quiz
XIV	2	V	Eliminating the interfering radicals, significance of sodium carbonate extract	Chalk and Board, Group discussion	Practical Chemistry – O.P Pandey	Quiz
XV	2	V	Spot test reagents – Magneson, Aluminon, Nesslers, Thiourea, Cupferon and DMG.	Chalk and Board, Group discussion	Practical Chemistry – O.P Pandey	Quiz

UECHC16
Chemistry of Natural Products

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
I	4	I	Carbohydrates: Classification, Chain lengthening and shortening of aldoses, Epimerisation, Constitution of glucose, Reactions of glucose- osazone formation, Cyclic structure- pyranose and furanose forms, Mutarotation and its mechanism	Chalk and Board, Group discussion	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Group discussion and Written test
II	4	I	Determination of ring size – Haworth projection formula, Constitution of fructose, Reactions of fructose – osazone, Configuration of glucose and fructose	Chalk and Board, Group discussion	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Group discussion and Written test
III	4	I	Constitution of sucrose, maltose, starch and cellulose	Chalk and Board, Group discussion	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Group discussion and Written test

IV	4	II	Classification of aminoacids- essential and nonessential aminoacids, Preparation of alpha aminoacids and properties- Zwitter ions, Isoelectric points	Chalk and Board, Group discussion	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Quiz
V	4	II	Synthesis of peptides, Classification of proteins, Denaturation	Chalk and Board, Group discussion	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Quiz
VI	4	II	Primary and secondary structure of proteins- Helical and Sheet structure	Chalk and Board, Power point	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol I – Gurdeep Chatwal	Quiz
VII	4	III	Nucleic acid, Nucleoside, Nucleotide, Phosphodiester bonds, types of nucleic acids	Chalk and Board, Power point	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Group discussion and Written test
VIII	4	III	RNA and DNA structures,Sequencing of DNA, Synthesising an oligonucleotide array	Chalk and Board, Power point	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Group discussion and Written test

IX	4	III	Denaturation of RNA and DNA, Replication, Transcription and Translation, Protein synthesis	Chalk and Board, Powerpoint	Organic chemistry- Anupa and Anup and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Group discussion and Written test
X	4	IV	Terpenes- Classification, Isoprene rule, Structure elucidation of geraniol, citral	Chalk and Board, Seminar	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Seminar
XI	4	IV	Structure elucidation of alpha- pinene, Alkaloids- Classification, General methods of structure determination.	Chalk and Board,Seminar	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Seminar
XII	4	IV	Structure elucidation of coniine, piperine and nicotine	Chalk and Board, Seminar	Advanced organic chemistry- Bahl and Bahl, Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Seminar
XIII	4	V	Flavones- Sources, Isolation, Separation,Purificatio n and properties.Structure elucidation of flavone	Chalk and Board,Group discussion	Chemistry of Natural Products- Vol II – Gurdeep Chatwal	Quiz

XIV	4	V	Structure elucidation	Chalk and Board,	Chemistry of	Quiz
			of flavone, Vitamins-	Group discussion	Natural Products-	
			Source,		Vol I and Vol II –	
			Classification.		Gurdeep Chatwal	
	4	V	Structure elucidation	Chalk and Board,	Chemistry of	Quiz
NA I			of thiamine and	Group discussion	Natural Products-	
XV			ascorbic acid		Vol I – Gurdeep	
					Chatwal	

PECHG19
Organometallic and Bioinorganic Chemistry

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
I	3	I	Introduction-18 electron rule and EAN rule — calculation, hapacity- definition.	Chalk and Board, Group discussion	Organometallic chemistry of transition metals by Robert H. Crabtree	Group Discussion and written test
II	3	I	Metal carbonyl complexes and poly nuclear carbonyl complexes Preparation and properties, Structure and Bonding.	Chalk and Board, Group discussion	Organometallic chemistry of transition metals by Robert H. Crabtree	Group discussion and written test
III	3	I	Carbonylate ion, Carbonyl hydride complex- Preparation and properties, Structure	Chalk and Board, Group discussion	Organometallic chemistry of transition metals by Robert H. Crabtree	Group discussion and written test

			and Bonding.			
IV	3	П	Nitrosyl complex, Metal alkyls - Preparation and properties, Structure and Bonding.	Chalk and Board, Group discussion	Organometallic chemistry of transition metals by Robert H. Crabtree	Quiz
V	3	I	Carbenes, Carbynes and carbides, non-aromatic alkenes and alkyne complex, metallocenes - Preparation and properties, Structure and Bonding.	Chalk and Board, Group discussion	Organometallic chemistry of transition metals by Robert H. Crabtree	Quiz
VI	3	IV	Metallo porphyrin and respiration (cytochromes).	Chalk and Board, Power point	Bioinorganic chemistry by Asim K Das	Quiz
VII	3	IV	Interaction between heme and dioxygen - Structure and function of haemoglobin	Chalk and Board, Power point	Bioinorganic chemistry by Asim K Das	Group Discussion and written test

VIII	3	IV	Ferredoxin and Rubredoxin, Blue copper protein.	Chalk and Board, Power point	Bioinorganic chemistry by Asim K Das	Group discussion and written test
IX	3	IV	Ion transport in membranes, Na, K balance, calcium in living cells (transport and	Chalk and Board, Power point	Bioinorganic chemistry by Asim K Das	Group discussion and written test
			regulation) selectivity of Ca ²⁺ over Mg ²⁺			
X	3	IV	Nitrogen fixation- atmospheric, industrial and biological.	Chalk and Board, Power point	Bioinorganic chemistry by Asim K Das	Seminar
XI	3	V	Biological role of metalloenzymes - carboxy peptidases	Chalk and Board, seminar	Bioinorganic chemistry by Asim K Das	Seminar
XII	3	V	Carbonic anhydrase- catalase,	Chalk and Board, seminar	Bioinorganic chemistry by Asim K Das	Seminar
XIII	3	V	Peroxidase, oxatransferase enzymes, xanthine oxidase.	Chalk and Board,Group discussion	Bioinorganic chemistry by Asim K Das	Quiz

XIV	3	V	Metals used for diagnosis.	Chalk and Board, Group discussion	Bioinorganic chemistry by Asim K Das	Quiz
XV	3	V	Chemotherapy with particular reference to anticancer drugs (platinum ammine halides, metallocenes and their halides).	Chalk and Board, Group discussion	Bioinorganic chemistry by Asim K Das	Quiz

UCCHB20

General Chemistry II

Week / Date	No of Hours	Units	Topics	Teaching Methodology& Student Centric Methods *	Learning Resources *	Method of Evaluation (Student Centric Methods * can be incorporated here)
Ι	2	I	Electron displacement effects – Inductive effect – effect on bond length, dipole moment, reactivity of alkyl halides	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Group Discussion and written test
II	2	I	Strength of carboxylic acids and basic character of amines, Electromeric effect, comparison with inductive effect	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Group discussion and written test
III	2	I	Mesomeric effect, comparison with inductive effect	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Group discussion and written test
IV	2	II	Hyperconjugation, Steric effect	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Quiz

V	2	I	Bond fission- homolytic and heterolytic, reaction intermediates, carbocations- generation, structure, stability and reactions	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Quiz
VI	2	IV	Cabanions- generation, structure, stability and reactions	Chalk and Board, Models	Reaction mechanisms including reaction intermediates by Aluwaliah	Quiz
VII	2	IV	Free radicals- generation, structure, stability and reactions	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Group Discussion and written test
VIII	2	IV	Generation of benzyne, nitrenes and carbenes	Chalk and Board, Group discussion	Reaction mechanisms including reaction intermediates by Aluwaliah	Group discussion and written test
IX	2	IV	Alkanes- chemical properties, mechanism of halogenation of alkanes	Chalk and Board, Group discussion	Advanced organic chemistry by Bahl and Bahl	Group discussion and written test
X	2	IV	Alkynes- acidity of alkynes, formation of acetylides	Chalk and Board, Seminar	Advanced organic chemistry by Bahl and Bahl	Quiz
XI	2	V	Addition reactions with water, hydrogen halides, halogens	Chalk and Board, seminar	Advanced organic chemistry by Bahl and Bahl	Quiz

XII	2	V	Oxidation, ozonolysis and hydroxylation with KMnO ₄	Chalk and Board, seminar	Advanced organic chemistry by Bahl and Bahl	Quiz
XIII	2	V	Exceptional properties of Lithium, diagonal relationship of Lithium and Magnesium	Chalk and Board,Group discussion	Advanced inorganic Chemistry – R.D. Madan	Quiz
XIV	2	V	Lithium- occurrence, ores, extraction from phosphate and silicate ores and uses	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Quiz
XV	2	V	Preparation, properties and uses of lithium carbonate	Chalk and Board, Group discussion	Advanced inorganic Chemistry – R.D. Madan	Quiz

$Auxilium\ College\ (Autonomous),\ Gandhi\ Nagar,\ Vellore-632\ 006.$

Lesson Plan for the Year 2020 – 2021

ODD SEMESTER

Programme	B.Sc. Chemistry
Programme Code	U17
Semester	I
Course	General Chemistry-I
Course Code	UCCHA20
Hours	3
a 11	_
Credits	5
Total Hours	45
Max Marks	40+60
Course	Dr. V. Sugantha Kumari
Instructor/Coordinator	Di. v. Suganula Kullari

Week	Portions to be covered	Reference	Platform (LMS)
I	Unit –IV Gaseous state - kinetic gas equation, derivation, gas laws from the kinetic gas equation, types of velocities - mean, Root Mean Square Velocity (RMS), Most Probable Velocities (MPV), calculation of molecular velocities. (No derivation).	i) Principles of Physical Chemistry by Puri and Sharma ii)Textbook of Physical Chemistry by P.L.Soni.	Google Meet
II	Maxwell's distribution of molecular velocities (derivation), equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
III	Equipartition of energy, collision number, Collision diameter, mean free path, definition.(No derivation)	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
IV	Real gases – deviation from ideal behavior – van der Waals' equation- Virial equation of state, Boyle's temperature (No derivation).	i) Principles of Physical Chemistry by Puri and Sharma	Google Meet

		ii) Textbook of Physical Chemistry by P.L.Soni.	
V	Joule's law, Joule Thomson effect, Joule Thomson Coefficient and its derivation, inversion temperature and its significance. (No derivation)	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
VI	Liquid State - qualitative treatment of the structure of liquids, surface tension – Definition, effects of surface tension, experimental determination – capillary rise method – drop weight method, applications	i) Principles of Physical Chemistry by Puri and Sharma ii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
VII	Viscosity – definition, effects of viscosity on temperature and pressure, experimental determination - Saybolt Viscometer and Ostwald's Viscometer method	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet

VIII	Unit –III Concept of Hybridization – definition, characteristics of hybrid orbitals, modes of hybridization	i) Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet
IX	Hybridization – tetra valency of carbon, geometry of molecules – methane, ethane, ethylene, acetylene and benzene	ii) Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet
X	Unit –V Classical Mechanics –the e/m of an electron, Rutherford's scattering experiments, Rutherford atomic model.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
X1	The Bohr theory of hydrogen atom, Sommerfeld extension of the Bohr theory.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
XII	Photoelectric effect and Compton effect- Wave mechanical concept of the atom, de Broglie's relationship	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet

XIII	Davisson and Germer experiment, wave nature of electron, Heisenberg's uncertainty principle	i) Principles of Physical Chemistry by Puri and Sharma	Google Meet
		ii) Textbook of Physical Chemistry by P.L.Soni.	
XIV	Quantum mechanics- postulates of quantum mechanics, concept of operators, angular wave function, Eigen values, Schrodinger wave equation (no derivation) and significance of wave functions.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet
XV	Radial and angular wave functions, probability distribution of electrons, radial probability distribution curves.	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Google Meet

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2020 – 2021 ODD SEMESTER

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	III
Course	Electro Chemistry
Course Code	PCCHL20
Hours	3
Credits	4
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Platform (LMS)
I	Unit –I: Activity and Activity coefficient, Mean ionic and Mean ionic activity coefficient, Ionic Strength and related problems. Debye Huckel Theory of Strong electrolytes	i) Introduction to Electrochemistry by Samuel Glasstone ii) Principles of Physical Chemistry by Puri and Sharma	Google Meet
II	Unit-I: Determination of activity coefficient by electrochemical method. Debye Huckel limiting law qualitative and quantitative verification of Debye Huckel Limiting law	i) Introduction to Electrochemistry by Samuel Glasstone ii) Principles of Physical Chemistry by Puri and Sharma	Google Meet
III	Unit-II: Different types of current-kinetic current, catalytic current, current for reversible and irreversible system. Qualitative and quantitative application of polarography to inorganic system	i) Analytical Chemistry by Khopkar ii) Instrumental Methods of Chemical analysis by M.S. Yadav	Google Meet

IV	Unit-II: Amperometric titrations,	i) Analytical Chemistry	Google Meet
	theory Types of titration curves	by Khopkar	
		i) Instrumental Methods	
		of Chemical analysis by	
		M.S. Yadav	
		Wi.b. Tadav	
V	Unit-II: Successive titration,	i) Analytical Chemistry	Google Meet
	Indicator electrode application	by Khopkar	
	Successive titration, Indicator	ii) Instrumental Methods	
		of Chemical analysis by	
	electrode application	M.S. Yadav	
		Wi.b. Tadav	
VI	Unit-II: Cyclic Voltammetry and its	i)Instrumental Methods	Google Meet
	application	of Chemical analysis by	
		M.S. Yadav	
		ii) Analytical Chemistry	
		by Khopkar	
		бу Кпоркаг	
		iii) Principles of Physical	
		Chemistry by Puri and	
		Sharma	
* ***	TI 's II D		
VII	Unit-II: Potentiometric titrations,	i) Instrumental Methods	
	equivalence point potential for	of Chemical analysis by	
	$Fe^{2+}/Fe^{3+}-MnO_4^-$, H^+/Mn^{2+} Systems	M.S. Yadav	

	Potentiometric titrations-	ii) Analytical Chemistry	
	determination of concentration of	by Khopkar	
VIII	the species at the equivalence point. Unit-III: Electrode-electrolyte	iii) Principles of Physical Chemistry by Puri and Sharma	Google Meet
V 111	interface- electrical double layer-	Electrochemistry by J.	Google Weet
	Electrocapillary maximum.	Bockris and Reddy	
	Lippmann Equation.	ii) Introduction to Electrochemistry by Samuel Glasstone	
IX	Unit-III: Structure of double layers	i)Modern	Google Meet
	- Helmholtz Perrin, Guoy-	Electrochemistry by	
	Chapmann Model of double layers.	J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone	
X	Unit-III: Stern model of electrical double layers. Fick's law of	i) Modern Electrochemistry by	Google Meet
	diffusion-Factors affecting Fick's law of diffusion-Significance.	J. Bockris and Reddy	

		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XI	Unit-III: Membrane potential –	i) Modern	Google Meet
	current across the biological	Electrochemistry by	
	membrane– Axon membrane	J. Bockris and Reddy	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XII	Unit-III- Electrokinetic	i) Modern	Google Meet
	phenomena- Electroosmosis,	Electrochemistry by	
	Electrophoresis, Sedimentation	I. Do alsuis and Dodder	
	Potential and Streaming potential.	J. Bockris and Reddy	
		ii) Introduction to	
		Electrochemistry by	
		Samuel Glasstone	
XIII	Unit-IV: Over potential-	i) Modern	Google Meet
	mechanism of the hydrogen and	Electrochemistry by	
	oxygen evolution reaction. Rates of	I Rockris and Doddy	
	simple electrode reactions-	J. Bockris and Reddy	
	elementary electron –electrode	ii) Introduction to	
	process.	Electrochemistry by	
		Samuel Glasstone	

XIV	Unit-IV: Butler-Volmer equation for single step electron transfer reaction, significance of electron exchange current density and symmetry factor. Rates of multistep electrode reactions, Butler–Volmer equation for a multistep reaction, transfer coefficient and its significance.	i) Modern Electrochemistry by J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone	Google Meet
XV	Unit-IV: Corrosion of metals — Theories of corrosion- types of corrosion-Pourbaix diagram Passivation of metals- Flade Potential- Evan's diagram Electro deposition — principle and applications, electrochemical reactions of technological interest.	i) Modern Electrochemistry by J. Bockris and Reddy ii) Introduction to Electrochemistry by Samuel Glasstone	Google Meet

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2020 – 2021

Programme	M.Sc. Chemistry
Programme code	P14
Semester	I
Course	Polymer Chemistry
Course Code	PECHA20
Hours	1
Credits	4
Total Hours	15
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Platform (LMS)
I	Unit –II: Polymer Characterization methods - Crystalline nature- degree of crystallinity, degree of crystallisability .	i) Polymer Science by V.R. Gowariker,N.V. Viswanathan and Jayadev Sreedharii) Textbook of Polymer Science byF.W. Billmeyer	Google Meet
II	X-ray diffraction studies.	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer	Google Meet
III	Glass transition temperature (Tg) – Definition, Factors affecting glass transition temperature	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer	Google Meet
IV	Importance of glass transition temperature-	i) Polymer Science by V.R. Gowariker,N.V. Viswanathan and Jayadev Sreedharii) Textbook of Polymer Science byF.W. Billmeyer	Google Meet

V	Relationship between glass transition temperature and melting point.	i) Polymer Science by V.R. Gowariker,N.V. Viswanathan and Jayadev Sreedharii) Textbook of Polymer Science byF.W. Billmeyer	Google Meet
VI	Study of polymers – Differential Scanning Calorimetric (DSC)	i) Polymer Science by V.R. Gowariker, N.V.Viswanathan and Jayadev Sreedharii) Textbook of Polymer Science byF.W. Billmeyer	Google Meet
VII	Thermo gravimetric analysis of polymers	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer	Google Meet
VIII	Relation to structure - surface morphology- Scanning Electron Microscopy (SEM).	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by F.W. Billmeyer	Google Meet

IX	Size of the particle	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	determination –	Viswanathan and Jayadev Sreedhar	
	Transmission Electron Microscopy (TEM)	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
X	Biopolymers- natural–	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	starch, cellulose, chitosan	Viswanathan and Jayadev Sreedhar	
	and silk	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
XI	Synthetic polymers -	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	polyvinyl alcohol (PVA),	Viswanathan and Jayadev Sreedhar	
	polyvinylpyrrolidone and polylactic acid.	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
3711	Di la la di		
XII	Biomedical application	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	of biopolymers- dental materials,	Viswanathan and Jayadev Sreedhar ii) Textbook of Polymer Science by	
	ophthalmology, orthopeadic Implants,	F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XIII	Biomedical application of biopolymers in tissue	i) Polymer Science by V.R. Gowariker, N.V. Viswanathan and Jayadev Sreedhar	Google Meet

	engineering and drug	ii) Textbook of Polymer Science by	
	delivery.	F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XIV	Industrial Applications of	i) Polymer Science by V.R. Gowariker, N.V.	Google Meet
	biopolymers- packaging,	Viswanathan and Jayadev Sreedhar	
	food packaging.	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	
XV	Industrial application of	i) Polymer Science by V.R. Gowariker,	Google Meet
	biopolymers in automotive and	N.V. Viswanathan and Jayadev Sreedhar	
	electronics application	ii) Textbook of Polymer Science by	
		F.W. Billmeyer	
		iii) Polymer Science and Technology by R. Joel	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – $632\ 006$.

Lesson Plan for the Year 2020 – 2021

EVEN SEMESTER

Programme	B.Sc. Chemistry
Programme Code	U17
Semester	П
Course	General Chemistry-II
Course Code	UCCHB20
Hours	3
Credits	5
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Platform (LMS)
I	Alkanes - chemical properties, mechanis of free radical reactions, halogenation alkanes	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet
II	Alkenes - addition reactions of alkenes with hydrogen, halogens, hydrogen halides- Markownikoff's rule and anti Markownikoff's rule (peroxide effect), sulphuric acid, water.	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet
III	Markownikoff's rule and anti Markownikoff's rule (peroxide effect), sulphuric acid, water.	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet
IV	Hydroboration, ozonolysis, hydroxylatio with KMnO ₄ , allylic substitution by NBS		Google Meet
V	Dienes - types, stability and 1,2 and 1,4 addition reactions - Diels –Alder reaction and its application.	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Google Meet

VI	Mesomorphic state - Liquid crystals – classification, thermotropic and lyotropic, Smectic, Nematic and Cholestric liquid crystals	i) Principles of Physical Chemistry by Puri and Sharmaii) Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method
VII	Molecular arrangements and its applications.	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
VIII	Solutions - solutions of gases in liquids, Henry's law. Solutions of liquids in liquids- Raoult's law	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Chalk and talk method
IX	Binary liquid mixtures and ideal solutions- Deviations from ideal behaviour,	Advanced Organic Chemistry by B.S Bahl and Arun Bahl	Chalk and talk method
X	Vapour pressure-composition curves and boiling point composition curves	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
X1	Distillation -types of distillation, fractional distillation, steam distillation.	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method

XII	Vacuum distillation, column distillation and azeotropic distillation.	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
XIII	Colloidal State - colloidal systems- classification of colloids.	Principles of Physical Chemistry by Puri and Sharma	Chalk and talk method
XIV	Preparation of colloidal solutions, dispersion methods and condensation methods	Principles of Physical Chemistry by Puri and Sharma. Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method
XV	Properties of colloidal systems – Tyndall effect, importance and applications of colloids	Principles of Physical Chemistry by Puri and Sharma. Textbook of Physical Chemistry by P.L.Soni.	Chalk and talk method

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the Year 2020 – 2021

EVEN SEMESTER

II M.Sc., Chemistry

PCCHM19-Natural Products and Bioorganic Chemistry

Week	Portions to be covered	Reference	Platform (LMS)
I	Amino acids - metabolism of amino acids - oxidative deamination, transamination reactions and urea cycle.	Organic Chemistry by I. L. Finar. Organic Chemistry of Natural Products by Gurdeep R. Chatwal	Chalk and talk method
II	Peptides - synthesis of tripeptide - solid phase peptide synthesis - Merrifield synthesis.	Organic Chemistry by I. L. Finar. Organic Chemistry of Natural Products by Gurdeep R. Chatwal	Chalk and talk method
III	Separation and purification of proteins, dialysis, gel filtration and electrophoresis.	Organic Chemistry by I. L. Finar. Organic Chemistry of Natural Products by Gurdeep R. Chatwal	Chalk and talk method

IV	Structural aspects of proteins	Organic Chemistry by I. L. Finar.	Chalk and talk method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
V	Determination of structure of proteins by XRD	Organic Chemistry	Chalk and talk
	method.	by I. L. Finar.	method
		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
X 7 T			
VI	Determination of structure of proteins by cryoscopy	Organic Chemistry	Chalk and talk
	method and NMR.	by I. L. Finar.	method
		Organic Chemistry.	
		of Natural Products	
		by Gurdeep R	
		Chatwal	
VII	Biosynthesis of amino acids - phenylalanine, tyrosine	Organic Chemistry	Chalk and talk
	and proline only	by I. L. Finar.	method

		Organic Chemistry	
		of Natural Products	
		by Gurdeep R.	
		Chatwal	
VIII	Nucleic acids - introduction - types of nucleic acids -	Principles of	Chalk and talk
	structure of nucleosides and nucleotides.	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
IX	DNA and RNA-polynucleotide chain - structural	Principles of	Chalk and talk
	features of DNA and RNA - Watson-Crick Model.	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
X	Chemical and enzymatic hydrolysis of nucleic acids	Principles of	Chalk and talk
		Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
XI	DNA sequence determination by chemical and	Principles of	Chalk and talk
	enzymatic methods	Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
XII	DNA metabolism-replication - mechanism-	Principles of	Chalk and talk
		Biochemistry by	method
		Nelson and Cox	
		Lehninger.	
XIII	Transcription - synthesis of RNA and its mechanism.	Principles of	Chalk and talk
		Biochemistry by	method

		Nelson and Cox Lehninger.	
XIV	Genetic code - origin and evolution,	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method
XV	Salient features- Wobble hypothesis.	Principles of Biochemistry by Nelson and Cox Lehninger.	Chalk and talk method

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the Year 2020 – 2021 EVEN SEMESTER

Programme	M.Sc. Chemistry
Programme code	P14
Semester	II
Course	Group Theory and Quantum Chemistry
Course Code	PCCHF20
Hours	3
Credits	4
Total Hours	45
Max Marks	40+60
Course Instructor/Coordinator	Dr. V. Sugantha Kumari

Week	Portions to be covered	Reference	Platform (LMS)
I	Introduction - symmetry elements and symmetry operations, group postulates and types of groups, sub groups, abelian and non-abelian groups	Group Theory and Its Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan	Google Meet
II	Group multiplication table, similarity transformations and classes of symmetry operations	Group Theory and Its Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan	Google Meet
III	Molecular point groups - point groups of molecules, point groups of tetrahedral and octahedral molecules. Identification of symmetry operations and determination of point groups.	Group Theory and Its Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan	Google Meet
IV	Matrices - matrix representations of symmetry operations,	Group Theory and its Applications to Chemistry by K. V. Raman	Google Meet

	reducible and irreducible	Group Theory in	
	representations.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
V	Orthogonality theorem and its	Group Theory and its	Chalk and talk method
	consequences, properties of	Applications to Chemistry	
	irreducible representations,	by K. V. Raman	
	labelling of irreducible representations.	Group Theory in	
	representations.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	
VI	Crystallographic symmetry - the	Group Theory and its	Chalk and talk method
	32 crystallographic point groups	Applications to Chemistry	
	- space groups - screw axis -	by K. V. Raman	
	glide planes - comparison of crystallographic symmetry with molecular symmetry.	Group Theory in Chemistry by M. S. Gopinathan and	
		V. Ramakrishnan	
VII	Construction of character table	Group Theory and its	Chalk and talk method
	for C _{2V} and C _{3V} point groups -	Applications to Chemistry	
	explanation for the complete	by K. V. Raman	
	character table for C_{2V} and C_{3V}	Group Theory in	
	point groups.	Chemistry by M. S.	
		Gopinathan and	
		V. Ramakrishnan	

IX	Selection rules for vibrational IR and Raman spectra. Mutual exclusion rule for molecules with centre of symmetry. Applications to molecular vibrations (IR and Raman) for determining symmetry of normal modes of vibration in nonlinear molecules H ₂ O, CH ₄ , BF ₃ and NH ₃ using group theory	Group theory and its application by A. Salahuddin Kunju and G. Krishnan Group Theory and its Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan Group Theory and its Applications to Chemistry by K. V. Raman Group Theory and its Applications to Chemistry by K. V. Raman Group Theory in Chemistry by M. S. Gopinathan and V. Ramakrishnan Group Theory in Chemistry by M. S. Gopinathan and Group theory and its application by A. Salahuddin Kunju and G. Krishnan	Chalk and talk method Chalk and talk method
		Salahuddin Kunju and	
X	Hybrid orbitals in nonlinear molecules CH ₄ , XeF ₄ , BF ₃ , SF ₆ , NH ₃ . Application of group	Group Theory and its Applications to Chemistry by K. V. Raman	Chalk and talk method

	theory to electronic spectra of	Group Theory in	
	ethylene and formaldehyde.	Chemistry by M. S.	
	,	Gopinathan and	
		V. Ramakrishnan	
		Group theory and its	
		application by A.	
		Salahuddin Kunju and	
		G. Krishnan	
XI	Approximation methods -	Quantum Chemistry by	Chalk and talk method
	variation methods - trial wave function - application of	R. K. Prasad	
	variation method to hydrogen	Quantum Chemistry by D.	
	and helium atoms.	A. Mcquarrie	
		Quantum Chemistry by A.	
		K. Chandra	
XII	Perturbation method and its	Quantum Chemistry by	Chalk and talk method
	application to particle in one dimensional box.	R. K. Prasad	
		Quantum Chemistry by D.	
		A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	
XIII	Born Oppenheimer	Quantum Chemistry by	Chalk and talk method
	approximation - treatment of molecules - application to helium	R. K. Prasad	
	atom. Hydrogen molecule -	Quantum Chemistry by	

	Heiter-London theory or valence	D. A. Mcquarrie	
	bond treatment - energy level diagram.	Quantum Chemistry by	
		A. K. Chandra	
XIV	Linear Combination of Atomic	Quantum Chemistry by	Chalk and talk method
	Orbitals (LCAO) - molecular orbital theory for hydrogen	R. K. Prasad	
	molecule ion and hydrogen	Quantum Chemistry by	
	molecule.	D. A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	
XV	Huckel's theory for conjugated	Quantum Chemistry by	Chalk and talk method
	molecules - ethylene, butadiene and benzene - semi empirical	R. K. Prasad	
	methods - Slater orbital and	Quantum Chemistry by	
	Hartree Fock–Self Consistent Field (HFSCF) methods.	D. A. Mcquarrie	
		Quantum Chemistry by	
		A. K. Chandra	

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2020 – 2021

ODD SEMESTER

UACHA20 - Allied chemistry I

Week	Portions to be covered	Reference	Platform (LMS)
1	Chemical kinetics - rate of reaction, rate law, factors affecting rate of the reaction	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
2	Molecularity and Order of the reaction, difference between order and molecularity	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
3	Methods of determining the order of a reaction, Collision theory for a bimolecular reaction	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Google Classroom
4	Derivation of rate constant of a first order reaction and half life period, Arrhenius theory- effect of temperature on reaction rate	Principles of Physical Chemistry B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
5	Introduction to qualitative and quantitative analysis, Principles of volumetric analysis	Principles of Inorganic Chemistry B.R Puri, L. R Sharma, and Kalia K. C	Google Classroom
6	Separation and purification techniques	Textbook of Allied	

	- extraction, distillation and	Chemistry	
	crystallization	V.Veeraiyan and A.N.S. Vasudevan	Google Classroom
7	Chromatography- column chromatography - principle, packing of columns, method of separation, identification of compounds and applications.	Fundamentals of analytical chemistry Skoog, Douglas A. West, Donald M	Google Classroom
8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Google Classroom
9	Thin layer chromatography - principle, procedure, $R_{\rm f}$ value and applications	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Google Classroom
10	Cements, setting of cements	Industrial chemistry Jain and Jain	Google Classroom
11	Explosives - TNT	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Google Classroom
12	Nitroglycerine and Dynamite	Textbook of Allied Chemistry V.Veeraiyan and A.N.S. Vasudevan	Google Classroom

$Lesson\ Plan\ for\ the\ year\ 2020-2021$

ODD SEMESTER

PCCHC20 - KINETICS AND PHOTOCHEMISTRY

Week	Portions to be covered	Reference	Platform
			(LMS)
1	Catalysis- Homogeneous catalysis - Acid-Base catalysis - types of acid-base catalysis specific and general acid-base catalysis. Mechanisms and kinetics of acid-base catalysed reactions- protolytic and prototropic mechanism – Bronsted catalysis law	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT
2	Enzyme catalysis – types of enzyme catalysis, rate of enzymes catalysed reaction by Michaelis-Menton mechanism – study of effect of substrate concentration, pH and temperature on enzyme catalysed reactions – inhibition in enzyme catalysed reactions.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT
3	Heterogeneous catalysis - surface reactions, types - physisorption and chemisorption, difference between physisorption and chemisorption, Lennard-Jones plots, Adsorption isotherms- Langmuir and BET isotherms – Postulates and derivations.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT
4	Kinetics of surface reactions — unimolecular and bimolecular reactions, catalysis by semiconductor oxides (n-type and p-type). Mechanism of heterogeneous catalytic reactions, Langmuir and Rideal-Eley mechanism-adsorption co-efficient and its significance.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT
5	Complex reactions- definition with examples, kinetics of reversible, consecutive and parallel reaction, Fast reactions - relaxation methods - pressure and temperature jump methods	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT

7	Chain reactions - types of chain reaction (Stationary and non-stationary, General treatment of chain reactions – chain length – explosion limits. Rice Herzfeld mechanism – order of reactions of unity, one-half and three-halves for photolysis of acetaldehyde, Stopped flow and flash photolysis methods.	Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose Chemical kinetics by Laidler Chemical kinetics by Rajaram Kuriocose	Google meet Online PPT Google meet Online PPT
8	Photochemistry - Introduction, Absorption and emission of radiation – intensity distribution in the electronic, vibrational species - Franck Condon Principle, Jablonski diagram- radiative and non-radiative processes-fluorescence and phosphorescence	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
9	E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing, E-type and P- type delayed fluorescence - spin forbidden radiative transition - internal conversion and intersystem crossing	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
10	Decay of electronically excited states, Dissociation and predissociation of diatomic molecules - energy transfer process. Photophysical processes - kinetics of unimolecular and bimolecular photophysical processes-kinetic treatment of excimer and exciplex formation.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
11	Quenching - static and dynamic quenching- Stern-Volmer equation, Photochemical reactions - Photo assisted mechanism, hydrogen and halogen reactions	Fundamentals of photochemistry by Mukherjee	Google meet Online

		Photochemistry by Singh Photochemistry by Gurdeep Raj	PPT
12	Kinetics of photochemical reaction, photoredox, photosubstitution, photoisomerization and photosensitized reactions.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
13	Photovoltaic and photogalvanic cells, photo assisted electrolysis of water, application of solar energy conversion, G value - radiolysis of water – hydrated electron, Ion pair yield.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
14	Radiation chemistry – Interaction of high-energy radiation with matter -primary and secondary processes.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT
15	Photocatalysis – applications of TiO ₂ photocatalyst for oxidation of organic pollutants – photochemical reaction of vision.	Fundamentals of photochemistry by Mukherjee Photochemistry by Singh Photochemistry by Gurdeep Raj	Google meet Online PPT

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006.

Lesson Plan for the year 2020 – 2021

ODD SEMESTER

PCCHL19 - ELECTROCHEMISTRY

Week	Portions to be covered	Reference	Platform
			(LMS)
1	Fuel cells - efficiency, Types of fuel cells	Electrochemi	Google meet
		stry by Bockris and Reddy	Online PPT
2	Alkaline fuel cell, phosphoric acid fuel cell	Electrochemistry by	Google meet
		Bockris and Reddy	Online PPT
3	High temperature and solid polymer electrolyte fuel	Electrochemistry by	Google meet
	cell	Bockris and Reddy	Online PPT
4	Kinetics of fuel cell	Electrochemistry by	Google meet
		Bockris and Reddy	Online PPT
5	general development of fuel cell technology	Electrochemistry by	Google meet
		Bockris and Reddy	Online PPT
6	Electrochemical sensors- ion selective electrodes	Electrochemistry by	Google meet
		D.R. Crow	Online PPT
7	Problems with ion selective electrode	Electrochemistry by	Google meet
		D.R. Crow	Online PPT
8	Chemically modified electrodes – gas sensing	Electrochemistry by	Google meet
	electrodes	D.R. Crow	Online PPT
9	Principle and working of Enzyme electrodes	Electrochemistry by	Google meet
		D.R. Crow	Online PPT
10	Sensors based on modified metal oxide field effect	Electrochemistry by	Google meet
	transistors (MOSFET)	D.R. Crow	Online PPT
11	The wall jet ring disc electrodes (WJRDE).	Electrochemistry by	Google meet

		D.R. Crow	Online PPT
12	Debye Huckel Limiting law - derivation	Physical chemistry	Google meet
		by Puri and Sharma	Online PPT
13	Quantitative verification of Debye Huckel limiting	Physical chemistry	Google meet
	law	by Puri and Sharma	Online PPT
14	Qualitative verification of Debye Huckel limiting	Physical chemistry	Google meet
	law	by Puri and Sharma	Online PPT
15	Debye Huckel limiting law at appreciable	Physical chemistry	Google meet
	concentration	by Puri and Sharma	Online PPT

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632006.

Lesson Plan for the year 2020 – 2021

EVEN SEMESTER

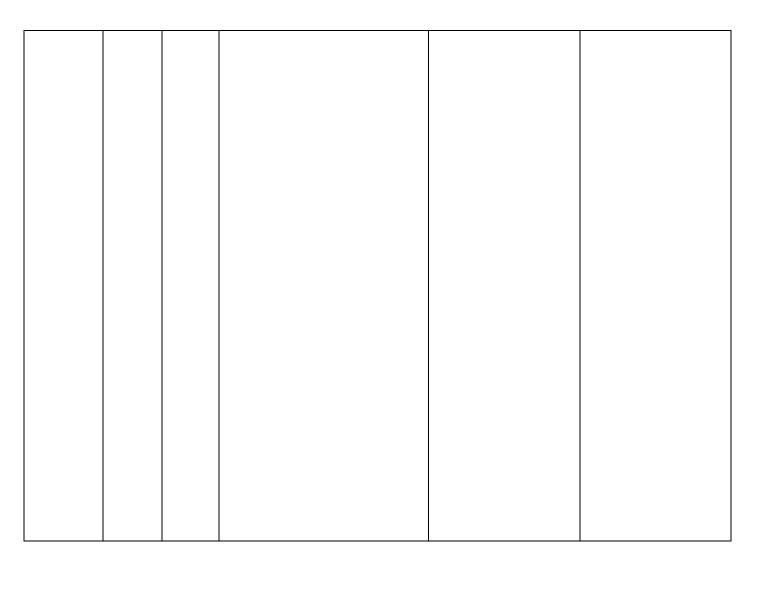
UACHB20- ALLIED CHEMISTRY

Week / Date	No of Hours	Units	Topics	Teaching Methodology & Student Centric Methods *	Learning Resources *
I week	2	III	Ionic equilibria, strong and weak electrolytes, common ion effect,	Participative Learning	Allied chemistry by Gopalan and sundaram.
II Week	2	III	Definition of pH, buffer solution.		Electrochemistry by M.S.Yadav.
III Week	2	III	Electrochemical cells- construction		
IV Week	2	III	Definition of emf, standard electrode potential,		Electrochemistry by Samuel
V Week	2	III	Types of cells- primary and secondary, standard hydrogen electrode, calomel electrode.		Electrochemistry by M.S.Yadav.
VI Week	2	III	Electrophoresis, electrodialysis, and electrosmosis.	Participative Learning	Electrochemistry by M.S.Yadav.
VII Week	2	IV	Photochemistry – laws of light absorption – Lamberts law and Lambert-Beer's Law.		Allied chemistry by Gopalan and sundaram.
VIII	2	IV	Grotthus – Draper law and Stark – Einstein law.		Photochemistry by Mukherjee.
IX Week	2	IV	Quantum yield – examples of photochemical reaction – kinetics of hydrogen – halogen reaction.		

X Week	2	IV	Jablonski diagram – fluorescence, phosphorescence, photosensitization, and chemiluminescence.	Allied chemistry by Gopalan and sundaram.
XI Week	2	V	Causes and treatment of Cancer, AIDS.	General reference from net.
XII Week	2	V	Causes and treatment of Diabetes.	

PNHRA 19 - HUMAN RIGHTS

week	No of	Units	Topics	Teaching	Learning
/	Hours			Methodology	Resources *
Date				& Student	
				Centric	


				Methods *	
I – V	5	2	Indian Constitution, Federalism characteristics, Directive principles, Constitutional remedies	Participative learning	College book and reference from net
VI – X	5	4	Universal declaration of Human Rights, Organs of UDHR		College book and reference from net
XI- XIV	4	5	Human trafficking, problems of children POCSO act, National children policy		College book and reference from net

PCCHO19 - THERMODYNAMICS

Week / Date	No of Hours	Units	Topics	Teaching Methodology & Student Centric	Learning Resources *
				Methods *	
I Week	4	I	Partial molar properties -	Participative	Thermodynamics by
			Partial molar free energy	Learning	Rajaram Kuriocose.
			(Chemical potential) - Partial		
			molar volume and Partial		
			molar heat content-their		
			significance.		
II Week	4		Variation of chemical		Thermodynamics for students
			potential with temperature		students
			and pressure, Duhem		Samuel Glasstone.
			Margules equation -		
			Determination of partial		
			molar properties by general		Physical Chemistry
III Week	4		method, method of intercept.		by Puri and Sharma.
			Determination of partial		
			molar properties by Direct		

IV Week	4		method, Apparent molar properties. Definition of fugacity-Variation of fugacity with temperature and pressure. Concept of activity and activity co-efficient. Determination of standard free energies - Choice of standard states -determination of activity and activity co-efficient of non-electrolytes.		Physical Chemistry by Puri and Sharma.
V Week	2	III	Factorization of molecular partition function, Mixture of gases.	Participative Learning	Thermodynamics by Rajaram Curiocose.
VI Week	4		Evaluation of the independent molecular partition function- Translational, Rotational, Vibrational, Electronic and Nuclear partition function	Problem Based Learning (PBL)	Thermodynamics for students by Samuel Glasstone.
VII Week	4		Law of equi partition of energies. Heat capacity of solids - Einstein model and Debye model.		Physical Chemistry by Puri and Sharma
VIII Week	4	IV	Nuclear spin statistics – ortho - para nuclear states - ortho para hydrogen		Thermodynamics by Rajaram Curiocose.
			Nuclear spin statistics of Deuterium, Application of statistical thermodynamics		Thermodynamics for students by Samuel Glasstone.
			Electron gas in metals, Black		Physical Chemistry

IX Week X Week	4		body radiation - Planck's distribution law, Stefan-Boltzmann law, Wein's law Uses of spectroscopic and structural data to calculate thermodynamic functions	Participative Learning Problem Based Learning (PBL)	by Puri and Sharma
XI Week	4	V	Non equilibrium thermodynamics: Postulates of non equilibrium thermodynamics - conservation of mass and energy - entropy production entropy Production in chemical reactions - entropy flow in open systems. Transformation properties of		Thermodynamics by Rajaram Curiocose. Thermodynamics for students by Samuel Glasstone.
XIII Week	4		rates and affinities - linear laws relative to fluxes and forces.		Physical Chemistry by Puri and Sharma
XIV Week	4		Curie's theorem, Onsagar's reciprocity relation, Relaxation phenomenon.		Thermodynamics by Rajaram Curiocose.

Auxilium College (Autonomous), Gandhi Nagar, Vellore – 632 006.

Lesson Plan for the year 2020 – 2021

ODD SEMESTER

SKILL-BASED ELECTIVE

II B.Sc. CHEMISTRY

USCHB319 - MEDICINAL CHEMISTRY

Week	T T •	Portions to be covered	Reference	Teaching
VVECK	Unit	Tortions to be covered	Kererence	Methodology
		First Aid - important		
1	I	rules of first aid, first aid	A Textbook of	Chalk and
		box, cuts and abrasion.	Pharmaceutical	board
			Chemistry	
			Dr. Jayashree	
			Ghosh	
		Bruises, bleeding,		
2	I	fractures, burns and	A Textbook of	Chalk and board
		poisonous bites.	Pharmaceutical	
			Chemistry	
			Dr. Jayashree	
			Ghosh	

		Detection of		
3	I	hallucinogens, poisons	A Textbook of	Chalk and board
		and antidotes for	Pharmaceutical	
		poisoning.	Chemistry	
			,	
			Dr. Jayashree	
			Ghosh	
4	II	Common Medicines -	Fundamental	Chalk and board
		analgesics, antipyretics	Concepts of	
		and anti-inflammatory	Applied	
		agents.	Chemistry	
			Dr. Jayashree	
			Ghosh	
5	II	Antiseptics, antibiotics	Fundamental	Chalk and board
		and antidepressants.	Concepts of	
			Applied	
			Chemistry	
			Dr. Jayashree	
			Ghosh	
6	II	Disinfectants, sedatives,	Fundamental	Chalk and board
		anesthetics – definition,	Concepts of	
		examples, uses and side	Applied	
		effects.	Chemistry	
			Dr. Jayashree	
			Ghosh	
7	III	Indian medicinal plants -	Indian Medicinal	Chalk and board
		medicinal properties of	plants	
		neem, keezhanelli,	An Illustrated	
		sembaruthy, thulsi and	Dictionary	
		thoothuvalai.	C. P. Khare	
		1	l	

8	III	Nithya kalyani, rose,	Indian Medicinal	Chalk and board
		turmeric, garlic, senavu,	plants	
		nerunji and curry leaves	An Illustrated	
			Dictionary	
			C. P. Khare	
9	III	Perandai, thipili,	Indian Medicinal	Chalk and board
		vallarai, karunjeeragam	plants	
		and flax seeds.	An Illustrated	
			Dictionary	
			C. P. Khare	
10	IV	Medicaments in	Practical	Chalk and board
		formulations - aerosol	Pharmaceutical	
		inhalations, capsules,	Chemistry	
		creams and emulsions.	A.H.Beckett and	
			J.B.Stenlake	
11	IV	Eye drops, injections,	Practical	Chalk and board
		ointments and	Pharmaceutical	
		suppositories.	Chemistry	
			A.H.Beckett and	
			J.B.Stenlake	
12	IV	Tablets, tonic, syrup and	Practical	Chalk and board
		hydrogels – definition,	Pharmaceutical	
		examples and uses.	Chemistry	
			A.H.Beckett and	
			J.B.Stenlake	
13	V	Medical applications of	Biomaterials	Chalk and board
		polymers – biomaterials	Sujatha V. Bhat	
		- definition and		
		characteristics, ceramic		

		implants and metallic		
		implants.		
14	V	Biomedical applications	Biomaterials	Chalk and board
		of polyurethane,	Sujatha V. Bhat	
		polydimethylsiloxane,		
		polyalkylsulphone and		
		polymethylmethacrylate.		
15	V	Acrylic hydro gels, poly	Biomaterials	Chalk and board
		vinyl chloride,	Sujatha V. Bhat	
		polypropylene,		
		polyethylene and		
		polylactic acid.		

PCCHB20 – STRUCTURAL INORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching Methodology
1	I	Acids and bases, proton	Inorganic	Chalk and board
		transfer equilibria in	Chemistry	
		water – solvent leveling	D.F.Shrivers,	
		effects, aqua acids,	P.W.Atkins and	
		periodic trends in aqua	C.H. Langford	
		acids – simple oxo acids		
		– anhydrous oxides –		
		polyoxo compound		
		formation.		
2	I	Lewis acid - base	Inorganic	Chalk and board
		concepts, Hard and soft	Chemistry	
		acids and bases - group		

		characteristics of Lewis	D.F.Shrivers,	
		acids, Lux - Flood theory	P.W.Atkins and	
		of acids and bases and	C.H. Langford	
		Usanovich acids and		
		bases.		
3	I	Super acids and	Inorganic	Chalk and board
		superbases, nonaqueous	Chemistry	
		solvents, classification,	D.F.Shrivers,	
		protic and aprotic	P.W.Atkins and	
		solvents, heterogeneous	C.H. Langford	
		acids and bases -		
		symbiosis and proton		
		sponges.		
4	II	Structure of complex	Inorganic	Chalk and board
		solids -layered structures,	Chemistry,	
		conducting ionic solids,	Principles,	
		graphite - solids held	Structure and	
		together by covalent	Reactivity	
		bonding, Diamond –	J.E. Huheey	
		Madelung constants,		
		Imperfections in crystals		
		- stoichiometric defects -		
		Schottky, controlled		
		valency, F-center and		
		Frenkel defect.		
5	II	Non-stoichiometric	Inorganic	Chalk and board
		defects - metal excess	Chemistry,	
		defect, metal deficient	Principles,	
		defect, impurity defect.	_	
<u> </u>				

Intrinsic and extrinsic semiconductors, jezoelectric and pyroelectric crystals, Superconductivity – Meissner effect, critical temperature and Critical magnetic Field. BCS theory, Type I and Inorganic Chalk and boat Type II superconductor, Chemistry
piezoelectric and pyroelectric crystals, Superconductivity – Meissner effect, critical temperature and Critical magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boa
pyroelectric crystals, Superconductivity – Meissner effect, critical temperature and Critical magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boa
Superconductivity – Meissner effect, critical temperature and Critical magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boards.
Meissner effect, critical temperature and Critical magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boards.
temperature and Critical magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boa
magnetic Field. 6 II BCS theory, Type I and Inorganic Chalk and boa
6 II BCS theory, Type I and Inorganic Chalk and boa
Type if superconductor, Chemistry
ternary Oxides, structure D.F.Shrivers,
O) and applications of C.H. Langford
high temperature
superconducting
materials.
7 III Structure of simple Inorganic Chalk and boa
solids, unit cell and Chemistry
crystal structures, close D.F.Shrivers,
packing of spheres and P.W.Atkins and
holes in closed packed C.H. Langford
structures.

O	TTT	Standard of martin 1	Inonagaia	Challe and Lee 1
8	III	Structure of metals and	Inorganic	Chalk and board
		alloys, non closed packed	Chemistry	
		structures,	D.F.Shrivers,	
		atomic radii of metals,	P.W.Atkins and	
		polytypism,	C.H. Langford	
		polymorphism of metals.		
9	III	Alloys - substitutional	Inorganic	Chalk and board
		solid solutions,	Chemistry	
		interstitial solid solutions	D.F.Shrivers,	
		of non metals ,	P.W.Atkins and	
		intermetallic	C.H. Langford	
		compounds,		
		characteristic and		
		structure of ionic solids,		
		binary phases (AX and		
		AX ₂), ternary phases		
		(ABO ₃ and AB ₂ O ₄).		
10	IV	Structure and bonding I -	Advanced	Chalk and board
		polyacids - isopolyacids	Inorganic	
		and heteropolyacids of	Chemistry	
		molybdenum and	F.A. Cotton and	
		tungsten, Dawson and	G. Wilkinson	
		Keggins structure of poly		
		acids, heteropolyanions		
		and heteropoly blues.		

11	IV	Inorganic polymers -	Inorganic	Chalk and board
11	l V		_	Chark and board
		Silicates, structures,	Chemistry,	
		properties, correlation	Principles,	
		and applications,	Structure and	
		molecular sieves,	Reactivity	
		feldspar, zeolites and	J.E. Huheey	
		ultramarines and its		
		application.		
12	IV	Polysulphur – nitrogen	Inorganic	Chalk and board
		compounds, structure	Chemistry,	
		and bonding in	Principles,	
		tetrasulphur tetranitride,	Structure and	
		polythiazyl and S _x S _y	Reactivity	
		compounds, and	J.E. Huheey	
		polyorgano		
		phosphazenes.		
13	V	Structure and Bonding II	Advanced	Chalk and board
		- boron hydrides,	Inorganic	
		introduction,	Chemistry	
		classification of boranes,	F.A. Cotton and	
		diborane, tetra borane,	G. Wilkinson	
		pentaborane, hexaborane		
		and decaborane,		
		polyhedral boranes -		
		Wade's rule - closo, nido		
		and arachno structures		
		and hydroboration.		

14	V	Carboranes - closo, nido	Advanced	Chalk and board
		and arachno structures of	Inorganic	
		carboranes,	Chemistry	
		metallocarboranes closo,	F.A. Cotton and	
		nido and arachno,	G. Wilkinson	
		structures of carboranes.		
15	V	Structure and bonding of	Advanced	Chalk and board
		boronitrides and metal	Inorganic	
		clusters- chemistry of	Chemistry	
		low molecularity metal	F.A. Cotton and	
		clusters (upto trinuclear	G. Wilkinson	
		metal clusters).		

EVEN SEMESTER

PCCHD20 - ORGANIC REACTIONS AND MECHANISMS

Week	Portions to be covered	Reference	Teaching Methodology
1	Unit I Oxidation by quinones, selenium dioxide, osmium tetroxide,	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
2	Unit I Oxidation by lead tetraacetate, formation of C-C bond in phenol coupling, acetylenic coupling.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
3	Unit I Oxidation by chromic acid (Jones reagent), chromium trioxide — pyridine (Sarett's reagent), DMSO-DCC (Pfitzer-Moffatt reagent).	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
4	Unit I Oppenauer oxidation, Dakin reaction and Swern oxidation.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
5	Unit III Wagner-Meerwein, Demjanov, Dienone – Phenol earrangement.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	PPT

6	Unit III Favorski, Baeyer-Villiger, Wolf, rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	PPT
7	Unit III Curtius, Lossen and Von-Richter rearrangements.	Reactions, Rearrangements and Reagents By S. N. Sanyal	PPT
8	Unit III Schmidt rearrangement. Nitrenes – Singlet and triplet nitrenes. Methods of generating nitrenes and their reactions.	Advanced Organic Chemistry Reactions, Mechanisms and Structure By Jerry March	Chalk and Board
9	Unit IV Reaction mechanisms and applications of Michael addition, Skraup and Ullmann reactions.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
10	Unit IV Reaction mechanisms and applications of Hunsdicker, Nef and HVZ.	Reactions, Rearrangements and Reagents By S. N. Sanyal	Chalk and Board
11	Unit V Photochemical excitation - fate of the excited molecules - study of photo chemical reaction of ketone. Norrish type I and Norrish type II reaction.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

12	Unit V Photocyclo addition – Paterno - Buchi reduction - photo cycloaddition of α-β unsaturated ketones- di-pi methane rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
13	Unit V Pericyclic reactions - classification, orbital symmetry - Woodward Hoffmann rules. Analysis of electrocyclic reaction -Types - 4n and 4n + 2 systems	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
14	Unit V Cyclo addition – Types – [2+2] and [4+2] cycloaddition reactions. Sigmatropic reactions- 1, n Hydrogen shift, Cope rearrangement and Claisen rearrangement.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board
15	Unit V Correlation diagrams for butadiene - cyclobutene system.	Reaction Mechanism in Organic Chemistry By S. M. Mukherji S. P. Singh	Chalk and Board

USCHD616 – SBE: FOOD CHEMISTRY

Week	Unit	Portions to be covered	Reference	Teaching methodolo gy
1	I	Food and food adulteration, food types, advantages and disadvantages.	Food Science By B.Srilakshmi	Chalk and board
2	I	Food adulteration- adulteration in food grains, milk, butter, ghee, ice creams and cakes, pepper, turmeric,	Food Science By B.Srilakshmi	Chalk and board
3	I	Food adulteration in chilli powder, edible oils, coffee and tea powder, fruits and vegetables. Detection of adulterants by simple analytical techniques.	Food Science By B.Srilakshmi	Chalk and board
4	II	Food additives - definition, structure, advantages and disadvantages of artificial sweeteners -saccharin, cyclamate and aspartate	Food Chemistry By Lillian Hoagland Meyer	PPT

5	II	Food flavours-esters, aldehydes and heterocyclic compounds Food colours, emulsifying agents, preservatives and leavening agents- baking powder, baking soda and yeast	Food Chemistry By Lillian Hoagland Meyer	PPT
6	II	Antioxidants- propyl gallate, butylated hydroxyl anisole and butylated hydroxyl toluene.	Food Chemistry By Lillian Hoagland Meyer	Chalk and board
7	III	Food poison and beverages - food poisons- pesticides and chemical poisons.	Food Chemistry By Seema Yadav	Chalk and board
8	III	First aid for poison consumed victims. Beverages - soft drinks- soda, carbonated drinks, fruit juices,	Food Chemistry By Seema Yadav	Chalk and board
9	III	Alcoholic beverages- examples and composition. Addiction to alcohol- diseases of liver. Deaddiction measures.	Food Science By B.Srilakshmi	Chalk and board
10	IV	Edible oils - fats, oils, sources of oils, saturated and unsaturated fats, importance of MUFA and PUFA,	Food Science By B.Srilakshmi	Chalk and board

11	IV	Iodine value, RM value, harmful effects of trans fat, saponification values and their significance.	Food Science By B.Srilakshmi	Chalk and board
12	IV	Rancidity- types, hydrolytic and oxidative, test for rancidity, prevention of rancidity.	Food Science By B.Srilakshmi	Chalk and board
13	V	Vegetables and Fruits - classification, composition, nutritive value of green leafy vegetables, roots and tubers, other vegetables.	Food Science By B.Srilakshmi	Chalk and board
14	V	Pigments- water insoluble and water soluble pigments. Vegetable cookery-preparation, changes during cooking, loss of nutrients during cooking.	Food Science By B.Srilakshmi	Chalk and board
15	V	Fruits- classification, composition, ripening of fruits, chemical fruit ripening, storage of fruits	Food Science By B.Srilakshmi	Chalk and board

Lesson Plan for the year 2020 - 2021

PCCHQ19 - Practical - V: Inorganic Chemistry -II

Week	Portions to be covered	Reference	Platform (LMS)
	Estimation	1. G. Svehla, B.Sivasankar,	(Online)
		Vogel's Qualitative Inorganic	Google meet
Week 1	Estimation of Copper and Nickel.	 Analysis - Pearson Publication, 7th Edition, 2012. 2. PG Lab Manual, Department of Chemistry, Auxilium College. 	(Offline) Google classroom
		1. G. Svehla, B.Sivasankar,	(Online)
Week 2		Vogel's Qualitative Inorganic Analysis - Pearson Publication,	Google meet
	Estimation of Copper and Zinc.	7 th Edition, 2012.	(Offline)
		2. PG Lab Manual, Department of	Google classroom
		Chemistry, Auxilium College. 1. G. Svehla, B.Sivasankar,	(Online)
		Vogel's Qualitative Inorganic	Google meet
		Analysis - Pearson Publication,	Google meet
Week 3	Estimation of Iron and Nickel.	7 th Edition, 2012.	(Offline)
		2. PG Lab Manual, Department of	Google
		Chemistry, Auxilium College.	classroom
		1. G. Svehla, B.Sivasankar,	(Online)
		Vogel's Qualitative Inorganic	Google meet
Week 4		Analysis - Pearson Publication,	
	Estimation of Iron and Magnesium.	7 th Edition, 2012.	(Offline)
		2. PG Lab Manual, Department of	Google
		Chemistry, Auxilium College.	classroom
		1. G. Svehla, B.Sivasankar,	(Online)
		Vogel's Qualitative Inorganic Analysis - Pearson Publication,	Google meet
Week 5	Estimation of Iron and Zinc.	7 th Edition, 2012.	(Offline)
	Domination of front and Zine.	2. PG Lab Manual, Department of	Google
		Chemistry, Auxilium College.	classroom
	Preparation	1. G. Svehla, B.Sivasankar,	(Online)
	_	Vogel's Qualitative Inorganic	Google meet
Week 6	Hexaamminenickel(II) chloride.	Analysis - Pearson Publication,	
week o	&	7 th Edition, 2012.	(Offline)
	Bis(acetylacetonato)copper(II)	2. PG Lab Manual, Department of	Google
	complex.	Chemistry, Auxilium College.	classroom

Week 7	Hexaamminecobalt(III) chloride. & Pentamminechlorocobalt(III) chloride.	1. G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7 th Edition, 2012. 2. PG Lab Manual, Department of Chamistry, Application, College	(Online) Google meet (Offline) Google
Week 8	Tris(thiourea)copper(I) sulphate. & Potassium tetrachlorocuprate(II).	Chemistry, Auxilium College. 1. G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. 2. PG Lab Manual, Department of Chemistry, Auxilium College.	classroom (Online) Google meet (Offline) Google classroom
Week 9	Potassium tris(oxalato)aluminate(III) trihydrate.	 G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. PG Lab Manual, Department of Chemistry, Auxilium College. 	(Online) Google meet (Offline) Google classroom
Week 10	Analysis of Alloys Determination of percentage of Copper and Zinc in Brass.	1. G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. 2. PG Lab Manual, Department of Chemistry, Auxilium College.	(Online) Google meet (Offline) Google classroom
Week 11	Determination of percentage of Chromium and Nickel in Stainless Steel.	1. G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. 2. PG Lab Manual, Department of Chemistry, Auxilium College.	(Online) Google meet (Offline) Google classroom
Week 12	Analysis of Ores Determination of percentage of Calcium and Magnesium in Dolomite.	1. G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. 2. PG Lab Manual, Department of Chemistry, Auxilium College.	(Online) Google meet (Offline) Google classroom
Week 13	Determination of percentage of MnO ₂ in pyrolusite.	 G. Svehla, B.Sivasankar, Vogel's Qualitative Inorganic Analysis - Pearson Publication, 7th Edition, 2012. PG Lab Manual, Department of Chemistry, Auxilium College. 	(Online) Google meet (Offline) Google classroom
Week 14	Interpretation of spectra for 5 inorganic compounds.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018.	(Online) Google meet

		2. R.M. Silverstein, G.D. Bassler and Monsu - Spectrometric Identification of Organic Compounds - John Wiley and Sons, New York, 6 th Edition, 2005.	(Offline) Google classroom
Week 15	Interpretation of spectra for 5 inorganic compounds.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018. 2. R.M. Silverstein, G.D. Bassler and Monsu - Spectrometric Identification of Organic Compounds - John Wiley and Sons, New York, 6 th Edition, 2005.	(Online) Google meet (Offline) Google classroom

Lesson Plan for the year 2020 - 2021

PCCHK19- MOLECULAR SPECTROSCOPY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	Ultra violet spectroscopy - Woodward-Fieser rules for conjugated dienes, polyenes and alpha, beta unsaturated carbonyl compound. The effect of steric hindrance to coplanarity – charge transfer spectral absorption.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Y.R.Sharma, Elementary Organic Spectroscopy Principles and Chemical Applications, S.Chand & Company Pvt.Ltd. 2013. 	Google Classroom
Week 2	Transitions in transition metal complexes – selection rules for electronic transitions – band widths – nature of electronic transitions in complexes. Auxochrome – types – chromophore concept – types.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Y.R.Sharma, Elementary Organic Spectroscopy Principles and Chemical Applications, S.Chand & Company Pvt.Ltd. 2013. 	Google Classroom
Week 3	Applications of UV Spectroscopy.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018.	Google Classroom
Week 4	Applications of IR spectroscopy to identify alkane, alkene, alkyne, aromatic compounds, nitrile and aromatic residues. Identification of alcohols, ethers, phenols, amines and carbonyl compounds such as ketones, aldehydes, esters, amides, acids, hetero aromatic compounds, halogen compounds, sulphur compounds, thiocyanates and isothiocynates, amino	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Y.R.Sharma, Elementary Organic Spectroscopy Principles and Chemical Applications, S.Chand & Company Pvt.Ltd. 2013. 	Google Classroom

	acids and amines.		
Week 5	Metal-ligand stretching vibrations for metal carbonyls, sulphates, thiocyanides, nitro and nitrito complexes.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018.	Google Classroom
Week 6	Applications of IR Spectroscopy – quantitative analysis, qualitative analysis, coordination compounds, hydrogen bonding studies, calculation of force constants and determination of aromaticity.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018.	Google Classroom
Week 7	Mass spectroscopy –Ionization techniques such as Chemical ionization, Electron ionization, (ESI, FD, FAB, SIMS, MALDI).	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole, Cengage Learning,2009. 	Google Classroom
Week 8	Molecular ions, isotope ions, meta stable peak, secondary ion mass spectroscopy. Nitrogen rule and ring rule, fragment ions of odd and even electron types.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole, Cengage Learning, 2009. 	Google Classroom
Week 9	Rearrangement ions - cleavage patterns — simple and multi center fragmentation.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. Donald L. Pavia, Gary M. Lampman, George S. Kriz, James R. Vyvyan, Introduction to Spectroscopy, Brooks/Cole, Cengage Learning, 2009. 	Google Classroom
Week 10	Applications of mass spectra to elucidate molecular formula and structure.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. L.D.S.Yadav, Organic Spectroscopy, 	Google Classroom

		Kluwer Academic Publishers, 2005.	
Week 11	McLafferty rearrangement- Interpretation of fragmentation pattern of phenols, aldehydes, lactones, nitro compounds, esters, acetals and ketals, hetero aromatic compounds and sulphides.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. L.D.S.Yadav, Organic Spectroscopy, Kluwer Academic Publishers, 2005. 	Google Classroom
Week 12	Introduction to GC-MS- and its advantages over MS.	1. Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14 th Edition 2018.	Google Classroom
Week 13	NMR spectroscopy – introduction – nuclear spin – Larmor frequency, precessional frequency– relaxation process – chemical shift – shielding constants – ring current and aromaticity – shifts for ¹ H and ¹³ C.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. R.M. Silverstein, G.D. Bassler and Monsu - Spectrometric Identification of Organic Compounds - John Wiley and Sons, New York, 6th Edition, 2005. 	Google Classroom
Week 14	Spin-spin interaction – nuclear magnetic double resonance – nuclear overhauser effect (NOE)	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. R.M. Silverstein, G.D. Bassler and Monsu - Spectrometric Identification of Organic Compounds - John Wiley and Sons, New York, 6th Edition, 2005. 	Google Classroom
Week 15	Applications of ¹ H NMR, ¹³ C NMR, ³¹ P NMR (HPF ₂ , H ₃ PO ₂ , H ₃ PO ₃ , H ₃ PO ₄ and P ₄ S ₃), ¹⁹ F NMR (ClF ₃ , ClF ₅ , SF ₄ and BrF ₅) and their applications to inorganic systems.	 Dr.H.Kaur – Spectroscopy - Pragati prakashan, Meerut, 14th Edition 2018. R.M. Silverstein, G.D. Bassler and Monsu - Spectrometric Identification of Organic Compounds - John Wiley and Sons, New York, 6th Edition, 2005. 	Google Classroom

Lesson Plan for the year 2020 - 2021

SKILL BASED ELECTIVE

(For B.Sc. Chemistry)

USCHC520 – SMALL SCALE CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT-1: Objectives and characteristics of small-scale industries – types of SSI, role of SSI in Indian economy.	Dr. V. Balu, Entrepreneurship and Small Business Promotion, First Edition, Sri Venkateswara Publications, 2004.	Google Classroom
Week 2	Problems of SSI, steps in starting SSI, laws for SSI, finance management.	Dr. V. Balu, Entrepreneurship and Small Business Promotion, First Edition, Sri Venkateswara Publications, 2004.	Google Classroom
Week 3	Quality control – definition and advantages. Marketing and branding. Advertising - definition, objectives, advertising media.	Dr. V. Balu, Entrepreneurship and Small Business Promotion, First Edition, Sri Venkateswara Publications, 2004.	Google Classroom
Week 4	UNIT-2: Soaps- definition, fatty and non- fatty raw materials, types of soaps, manufacture of laundry soap and bathing soap.	H.Panda, Herbal soaps detergents Hand Book, National institute of industrial research, 2011.	Google Classroom
Week 5	Mechanism of cleansing action of soap. Composition, preparation and advantages of herbal soaps.	H.Panda, Herbal soaps detergents Hand Book, National institute of industrial research, 2011.	Google Classroom
Week 6	Detergents – classification of surfactive agents (LABSA), manufacture of detergents. Shampoo – composition and manufacture of egg and herbal shampoo, anti dandruff and conditioners.	H.Panda, Herbal soaps detergents Hand Book, National institute of industrial research, 2011.	Google Classroom
Week 7	UNIT-3: Cosmetics – definition, history, kinds of cosmetics.	B.M.Mithal & R.N.Sharma Poucher's perfumes, Cometics and Soaps 10th edition.	Google Classroom
Week 8	Preparation of face powder, face	A Hand book of cosmetics by	Google Classroom

	cream and lipstick.	B.M.Mithal & R.N.Sharma Poucher's perfumes, Cometics and Soaps 10th edition.	
Week 9	Perfumes – definition, essential ingredients in perfumes. Classification of essential oils – preparation of perfumes.	A Hand book of cosmetics by B.M.Mithal & R.N.Sharma Poucher's perfumes, Cometics and Soaps 10th edition.	Google Classroom
Week 10	UNIT-4: Camphor – production, biosynthesis and applications. Bleaching powder – preparation, properties and uses. Biogascomposition, production and uses.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom
Week 11	Handmade paper from bagasse- composition of bagasse and uses. Asofoetida – composition, cultivation, manufactures and uses.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom
Week 12	Composition and manufacture of safety matches and agarbattis.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom
Week 13	UNIT-5: Recycling of synthetic organic polymers – applications of PET, PVC, HDPE, and polystyrene.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom
Week 14	Reverse osmosis of water – production and applications. Coconut oil – manufacture by dry and wet processes and uses.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom
Week 15	Vulcanization of rubber, making an eraser. Pencils – forms of graphite, adhesion and lengthwise graphitization method and uses.	B.K.Sharma, Industrial Chemistry, Goel Publishing House, 2008.	Google Classroom

Lesson Plan for the year 2020 - 2021

UGCHA520 - FOOD AND NUTRITION CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT-1: Nutrition and Health - concept, classification of foods. Nutrients - macro and micro nutrients.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 2	Carbohydrates - sources, classification, functions, deficiency diseases, energy requirements, blood sugar level.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 3	Carbohydrates metabolism - Glycolysis, Glyconeogenesis, Glycogenolysis.	AmbigaShanmugam, Fundamentals of Biochemistry for Medical Students, 8 th Edition, 2016.	Google Classroom
Week 4	UNIT-2: Proteins-sources, classification, functions.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 5	Proteins - deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 6	Fats - Sources, classification, functions, deficiency diseases, energy requirements and metabolism.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 7	UNIT-3: Vitamins— classification, difference between fat soluble and water soluble vitamins. Fat soluble vitamins (A, D, E and K),	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom

Week 8	Water soluble vitamins (Thiamine, Riboflavin, Niacin Pyridoxine, Pantothenic acid,) sources, functions, deficiency diseases and daily requirements.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 9	Water soluble vitamins (Foliate, Choline, Biotin Cyanocobalamin, Ascorbic acid) sources, functions, deficiency diseases and daily requirements.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 10	UNIT-4: Minerals – classification, major elements (Ca, P, Na, K, Fe, Mg, I and F)	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 11	Trace elements (Zn, Cu, Co, Se, Mo) - sources, functions, deficiency diseases and recommended requirements.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 12	Balanced diet - Recommended diet for adult - Indian men and women. Diet in pregnancy and lactation.	Shrinandan Bansal, Food and Nutrition, 2 nd Edition, AI.T.B.S Publishers, India, 2010.	Google Classroom
Week 13	UNIT-5: Vegetables – Nutritive value of green leafy vegetables, roots and tubers. Vegetable cookery (preliminary preparation, changes during cooking, loss of nutrients during cooking).	B.Srilakshmi, Food Sciences, 5 th Edition, New Age International Publishers, 2010.	Google Classroom
Week 14	Fruits – Nutritive value of fruits, pigments, water, cellulose and pectic substances, flavour constituents, polyphenols, bitterness in fruits.	B.Srilakshmi, Food Sciences, 5 th Edition, New Age International Publishers, 2010.	Google Classroom
Week 15	Ripening of fruits – chemical ripening. Storage of fruits. Antioxidants - antioxidant properties of vegetables and fruits.	B.Srilakshmi, Food Sciences, 5 th Edition, New Age International Publishers, 2010.	Google Classroom

Lesson Plan for the year 2020 - 2021

UCCHA20 - GENERAL CHEMISTRY – I

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	Periodicity of properties – definition.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 2	Factors affecting and periodicity of atomic radii.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 3	Factors affecting and periodicity of ionic radii.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 4	Factors affecting and periodicity of ionization potential.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 5	Factors affecting and periodicity of electron affinity.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 6	Factors affecting and periodicity of electronegativity.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 7	Determination of electronegativity – Pauling's scale and Mulliken's scale.	R.D.Madan, Modern Inorganic Chemistry, 3 rd revised edition, S. Chand & Co, Reprint 2016.	Google Classroom
Week 8	IUPAC system of nomenclature of organic compounds- Introduction-Rules of IUPAC System of Nomenclature of organic compounds.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 9	IUPAC System nomenclature for complex organic compounds - alkanes, substituted alkanes, alkyl halides.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 10	IUPAC System nomenclature for complex organic compounds - alkenes, alkynes.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 11	IUPAC System nomenclature for complex organic compounds - alkyl substituents-Cycloalkanes.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand	Google Classroom

		and Co., Ltd, Reprint 2016.	
Week 12	Compounds having functional groups - alcohols, ethers, aldehydes.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 13	Compounds having functional groups - ketones, carboxylic acids, esters, nitro compounds.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 14	Compounds having functional groups - aromatic compounds and substituted aromatic compounds, poly functional and heterocyclic compounds.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom
Week 15	Compounds having functional groups - Bicyclic and Spiro compounds.	B.S Bahl and Arun Bahl, Advanced Organic Chemistry, Sultan Chand and Co., Ltd, Reprint 2016.	Google Classroom

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	I
Course	Stereochemistry and conformational analysis
Course Code	PCCHA20
Hours	5
Credits	5
Total Hours	75
Max Marks	100
Course Instructor/ Coordinator	Ms. Revathy T

Lesson Plan for the year 2020 - 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Unit 1: Chirality and optical activity - symmetry elements, asymmetric and dissymmetric molecule. Projection formula - Sawhorse, Newmann and Fischer projections and its interconversions.	 Advanced Organic Stereochemistry by N.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi 	Google meet
2	Unit 1: Nomenclature - Absolute configuration - R/S and D/L, Relative configurations - threo/erythro and syn/anti. Dissymmetry of allenes, biphenyls - atropisomerism, spiro compounds, transcyclooctene, cyclononene and molecules with helical structures.	 Advanced Organic Stereochemistry byN.Tewari Stereochemistry – Conformation and Mechanism by P.S.Kalsi 	Google meet& Google classroom
3	Unit 1:	Advanced Organic	Google meet

4	Stereo specific and stereo selective reactions - definition and examples. Asymmetric synthesis - Cram's rule. Geometrical isomerism - E/Z nomenclature of olefins, Geometrical and optical isomerism of disubstituted cyclopropane, cyclobutane and cyclopentanes. Unit 2: Conformational analysis of di-substituted cyclohexanes and their stereo chemical features - Geometric and optical isomerism of these derivatives.Conformation and reactivity of cyclohexene - Allylic 1,2 and 1,3 strain and related compound alkyldiene cyclohexane.	Stereochemistry byN.Tewari Stereochemistry — Conformation and Mechanism by P.S.Kalsi Advanced Organic Stereochemistry by N.Tewari Stereochemistry — Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri	Google meet& Google classroom
5	Unit 2: Conformation of cyclohexanone-2-alkyl and 3-alkyl ketone effect and reactivity of cyclohexanone in comparison with cyclopentanones. Conformations of six membered rings containing hetero atoms.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri Stereochemistry of Carbon Compoundsby Ernest L. Eliel 	Google meet
6	Unit 2: Conformation and stereochemistry of cis and trans decalin and 9-methyl decalin.Quantitative correlation between conformation and reactivity - Curtin-Hammett principle.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri Stereochemistry of Carbon Compounds by Ernest L. Eliel 	Google meet
7	Unit 3: $S_N 2$ reaction - kinetics, mechanism and factors influencing the reaction. $S_N 1$ reaction - kinetics, mechanism, factors influencing the reactions, Rearrangement reaction.	Stereochemistry – Conformation and Mechanismby P.S.Kalsi Stereochemistry of	Google meet& Google classroom

		Carbon Compounds by Ernest L. Eliel	
8	Unit 3: Mixed S_N1 and S_N2 reactions — competition between S_N1 and S_N2 mechanism. Substitution by ambident nucleophiles, substitution at allylic, vinylic, benzylic and aryl halides	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri 	Google meet
9	Unit 3: SET (single electron transfer)- Types of electron transfer reactions - photoinduced and chemically induced electron transfer. Neighbouring group participation – introduction of an acyclic open chain system, Π systems of aromatic rings, cyclic system, double bond and σ bond.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri 	Google meet& Google classroom
10	Unit 4: E ₁ , E ₂ , E ₁ CB reaction – kinetics, mechanism and evidences.E ₁ , E ₂ and E ₁ CB variablesmechanistic spectrum, competition between elimination and substitution.	 Stereochemistry – Conformation and Mechanism byP.S.Kalsi Stereochemistry of Organic Compoundsby D. Nasipuri 	Google meet
11	Unit 4: Stereochemistry of E ₂ - syn and anti elimination reaction, orientation of the double bond.Regiochemistry of E ₁ , E ₂ and E ₁ CB reactions with examples.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri 	Google meet
12	Unit 4: Pyrolytic eliminations - acyclic and alicyclic systems, Molecular rearrangements during elimination.Grob's fragmentations - Incorporation of fragmentation - Mechanism of fragmentation - Mechanism allied to E ₁ and E ₂ elimination.	 Stereochemistry – Conformation and Mechanism by P.S.Kalsi Stereochemistry of Organic CompoundsbyD. Nasipuri 	Google meet& Google classroom
13	Unit 5: Optical Rotatory Dispersion and Circular Dichroism- terminology- optical rotation, circular birefringence, circular dichroism and	Stereochemistry of Carbon Compounds by Ernest L. Eliel	Google meet& Google classroom

	A 1: - 4:	G. 1	
	cotton effect.Plain curves – Application of	3	
	plain curves – determination of structure,	Organic	
	configuration, conformation and optical	CompoundsbyD.	
	activity.	Nasipuri	
14	Unit 5:	• Stereochemistry of	Google
	Rotatory dispersion of ketones - structure,	Carbon Compounds	meet&
	configuration, conformation of unsaturated	by Ernest L. Eliel	Google
	ketones. Emperical and semiempirical rules-	• Stereochemistry of	classroom
	The Axial haloketone rule, the Octant rule	Organic	
	(Configuration and Conformation)	CompoundsbyD.	
		Nasipuri	
15	Unit 5:	Stereochemistry of	Google meet
	Absolute configuration and ketal	Carbon Compounds	
	formation.Stereochemical analysis –	by Ernest L. Eliel	
	polarimetry, chiral GC & HPLC and NMR	• Stereochemistry of	
	techniques.	Organic	
		Compoundsby D.	
		Nasipuri	

Programme	M.Sc. Chemistry	
Programme Code	P14	
Semester	III	
Course	Molecular Spectroscopy	
Course Code	PCCHK19	
Hours	1	
Credits	3	
Total Hours	60	
Max Marks	100	
Course Instructor/ Coordinator	Ms. Revathy T	

Lesson Plan for the year 2020 - 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Rotational spectroscopy: Classification of molecules, rigid rotor model, selection rules.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
2	Intensity of spectral lines, effect of isotopic substitution.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Fundamentals of molecular spectroscopy – P.S. Sindhu 	Google meet

3	Non rigid rotator and significance of D value.	• Fundamentals of Molecular spectroscopy – C.N. Banwell	Google meet
4	Microwave spectra of polyatomic molecules.	• Fundamentals of Molecular spectroscopy – C.N. Banwell	Google meet
5	Vibrational spectroscopy: Harmonic oscillator, selection rules.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Fundamentals of molecular spectroscopy – P.S. Sindhu 	Google meet
6	Vibrational energy of diatomic molecules, zero point energy, force constant and bond strength.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Fundamentals of molecular spectroscopy – P.S. Sindhu 	Google meet
7	Anharmonicity, Morse potential energy diagram, Franck Condon principle.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
8	Vibrational spectra of poly atomic molecules.	• Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas	Google meet
9	Vibration-rotation spectroscopy, P, Q, R, branches	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – 	Google meet

		G. Aruldhas	
10	Breakdown of Born-Oppenheimer approximation,	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
11	Vibration of polyatomic molecules, normal modes of vibration, overtones, hot bands, Fermi resonance.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
12	Raman spectroscopy: Classical and quantum theories of Raman effect.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
13	Pure rotational, spectra, selection rules, stokes and anti-stokes lines.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
14	Vibrational Ramanspectra, selection rules, stokes and anti-stokes lines.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet
15	Vibrational-rotational Raman spectra, selection rules, stokes and anti-stokes lines, mutual exclusion principle.	 Fundamentals of Molecular spectroscopy – C.N. Banwell Molecular structure and spectroscopy – G. Aruldhas 	Google meet

Lesson Plan for the year 2020 – 2021

Programme	B.Sc. Chemistry
Programme Code	U17
Semester	III
Course	General Chemistry III
Course Code	UCCHD19
Hours	3
Credits	5
Total Hours	45
Max Marks	100
Course Instructor/ Coordinator	Ms. Revathy T

Week	Portions to be covered	Reference	Platform (LMS)
1	Unit II:	• Modern Inorganic	Google meet
	Alkaline earth metals - Be, Mg, Ca, Sr, Ba	Chemistry -	
	- occurrence, comparative study of	R.D.Madan	
	elements and compounds- oxides, halides.	 Textbook of 	
		Inorganic Chemistry-	
		P.L Soni	
2	Unit II:	Modern Inorganic	Google meet
	Comparative study of elements and compounds-hydroxides, sulphates and carbonates.	Chemistry -	
		R.D.Madan	
		• Textbook of	
		Inorganic Chemistry-	
		P.L Soni	
3	Unit II:	Modern Inorganic	Google meet

4	Exceptional properties of Beryllium – Diagonal relationship between Be and Al, extraction of magnesium. Unit II:	Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni Modern Inorganic	Google meet &
	p block elements -Boron family- comparative study of elements and compounds- oxides, hydroxides, halides and hydrides.	Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni	Google classroom
5	Unit II: Preparation, properties, uses and structures of LiAlH ₄ , NaBH ₄ and Borozole.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni 	Google meet
6	Unit II: Preparation, properties, uses and structures of Diborane. Carbon family - comparative study of elements and compoundshydrides, oxides and halides.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni 	Google meet
7	Unit II: Classification of silicates, chemistry of silicones and their applications.	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni 	Google meet & Google classroom
8	Unit III: Cycloalkanes – preparation using Wurtz's reaction, Dieckmann's ring closure and reduction of aromatic hydrocarbons, Substitution and ring opening reactions.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet
9	Unit III: Baeyer's strain theory, theory of strainless rings. Carbonyl compounds- preparation from alcohols, alkene, alkyne, acid chloride, Grignard reagent.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic 	Google meet & Google classroom

		Chemistry-M.K Jain and S.C Sharma	
10	Unit III: Chemical reactions, relative reactivities of aldehydes and ketones, acidity of α hydrogen.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet
11	Unit III: Nucleophilic addition reactions of carbonyl compounds (bisulphate, HCN, Grignard and alcohol). Carboxylic acid- ionization of carboxylic acids, acidity constants.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet
12	Unit III: Comparison of acid strengths of substituted haloacids, acid strengths of substituted benzoic acids.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet
13	Unit III: Conversion of acids to their derivatives. Dicarboxylic acids- preparation and properties of oxalic and malonic acids.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet & Google classroom
14	Unit III: Dicarboxylic acids- preparation and properties of succinic and glutaric acids.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet & Google classroom
15	Unit III: Dicarboxylic acids- preparation and properties of adipic acids and phthalic acids.	 Advanced Organic Chemistry-B.S Bahl, and Arun Bahl Modern Organic Chemistry-M.K Jain and S.C Sharma 	Google meet

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	II
Course	Advanced Coordination Chemistry
Course Code	PCCHE20
Hours	4
Credits	4
Total Hours	60
Max Marks	100
Course Instructor/ Coordinator	Ms. T. Revathy

Lesson Plan for the year 2020 – 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Unit 1: Thermodynamic and kinetic stability-stepwise and overall stability constant- Relationship between both the constants. Trend in K-value - Irrving-Williams series – classification of metals	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Google meet
2	Unit 1: Detection of complex formation. Factors affecting the stability of complexes	 Essentials of Coordination Chemistry by Vasishtabhatt Inorganic Chemistry by Purcell and Kotz 	Google meet & Google classroom
3	Unit 1: Determination of stability constants by	Concise Coordination	Google meet

	spectrophotometric, polarographic and potentiometric methods. Optical rotatory dispersion and circular dichroism- application to complexes.	Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar	
4	Unit 1: Macrocyclic Ligands: Thermodynamic and kinetic template effect- structure, stability and applications of porphyrins, corrins, Schiff bases, Crown ethers and crypts.	Coordination Chemistry of Macrocyclic Compounds by Gordon A Melson The chemistry of macrocyclic ligand complexes by Leonard F. Lindoy	Google meet & Google classroom
5	Unit 3: Types of absorption spectra – ligand spectra, counter - ion spectra, CT spectra, ligand field spectra –R-S coupling- Microstates –Hund's rule - Term states for 'd' – ions	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Classroom
6	Unit 3: Selection Rules–Laporte's and spin selection rule, Splitting of terms in oh and td complexes. Correlation diagrams –Orgel diagrams	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Classroom
7	Unit 3: Correlation diagrams - Tanabe-Sugano diagrams- Spectra of different d systems - Racah parameters-nephelauxetic effect. Charge Transfer spectra- Classification-Ligand to Metal, Metal to Ligand, Intervalence and Intra Ligand Charge transfer	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Classroom& Google classroom
8	Unit 3: Magnetic characteristics of transition metal complexes - types- determination of magnetic susceptibility - Guoy and Faraday's method - magnetic criterion of bond type in complex and orbital contribution to magnetic moment.	 Physical Inorganic Chemistry- A Coordination Chemistry Approach by S. F. A. Kettle Concise Coordination Chemistry by R. Gopalan 	Classroom
9	Unit 4: Electron transfer reactions (redox reactions):	Concise Coordination	Classroom& Google

	Outer Sphere Mechanism- characteristics, factors influencing OSM.	Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar	classroom
10	Unit 4: Cross reactions — Marcus-Hush principle. Inner Sphere Mechanism — characteristics. Inner Sphere Mechanism - factors influencing ISM, OSM versus ISM	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Classroom
11	Unit 4: Two electron transfers, Non-complementary electron transfer reactions, Reactions of the coordinated ligands, geometrical and optical isomerization reactions. Electron transfer reactions in biological systems – Cytochromes	 Concise Coordination Chemistry by R. Gopalan Coordination Chemistry by Ajay Kumar 	Classroom
12	Unit 4: Electron transfer reactions in biological systems — Rubredoxins and Ferredoxins. Ligand substitution reactions in square-planar complexes — mechanism — influences of entering, leaving and central metal ion on the reactivity of square planar complexes of Pt	 Inorganic Chemistry by Purcell and Kotz Concise Coordination Chemistry by R. Gopalan 	Classroom& Google classroom
13	Unit 5: Trans effect – Trans effect series – theories and applications, cis effect. Mechanisms of substitutions in octahedral complexes-Dissociative, Associative and Interchange (I _a and I _d) mechanisms.	 Inorganic Chemistry by Purcell and Kotz Advance Inorganic Chemistry by Gurdeep Raj 	Classroom& Google classroom
14	Unit 5: Hydrolysis reactions –acid and base hydrolysis reactions of six-coordinated Co(III) ammine complexes – mechanisms – evidences. Replacement of coordinated water – mechanisms – evidences	 Advance Inorganic Chemistry by Gurdeep Raj Inorganic Chemistry by Purcell and Kotz 	Classroom& Google classroom
15	Unit 5: Rates of water replacement - orbital occupation effects. Synthesis of Pt and Co compounds- Metal complexes in medicinal chemistry, industrial processes and agriculture.	 Inorganic Chemistry by Purcell and Kotz Descriptive inorganic, Coordination, and Solid-state chemistry by Glen E. Rodgers 	Classroom

	Concise Coordination Chemistry by R. Gopalan	

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	II
Course	Solid State chemistry and Nuclear chemistry
Course Code	PCCHN19
Hours	4
Credits	4
Total Hours	60
Max Marks	100
Course Instructor/ Coordinator	Ms. T. Revathy

Lesson Plan for the year 2020 - 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Structure of solids- Comparison of X-ray and Neutron diffraction- Structure of Cadmium iodide and Nickel arsenide	 Structural Inorganic Chemistry by A. F. Wells E-Resources (wwwchem.uwimona. edu.jm) 	Google meet
2	Structure of Perovskite and spinels and inverse spinels, Formation of spinels	 Structural Inorganic Chemistry by A. F. Wells Understanding Solids by Richard Tilley E-Resources 	Google meet

		(wwwchem.uwimona. edu.jm)	
3	Hall effect and its applications, Pyroelectricity, piezo electricity and ferro electricity	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry- An Introduction by Smart and Moore 	Google meet
4	Magnetic properties of solids- Hysteresis loss and loops Types of magnetic behaviour- Dia, Para, Ferro, Anti Ferro, Ferri magnetism- Ferrites, Garnets.	 Solid State Chemistry and its Applications by Anthony R. West Understanding solid state physics by Sharon Ann Holgate 	Google meet
5	Solid state electrolyte-β-alumina-application of solid state electrolytes.	 Solid State Chemistry and its Applications by Anthony R. West Solid State Electrochemistry by Peter G Bruce 	Google meet
6	Reactions in solid state- Formation of spinel, co-precipitation and sol-gel method. Diffusion, Diffusion co-efficient,	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry by D K Chakrabarty 	Google meet
7	Diffusion mechanisms- Vacancy and interstitial diffusion. Growing single crystals – crystal growth from solution, growth from melt and vapour deposition technique.	 Solid State Chemistry and its Applications by Anthony R. West Solid State Chemistry by D K Chakrabarty 	Google meet
8	Quark theory, The magnetic properties of the Nucleus-Bohr magneton, Nuclear magneton, the neutron magnetic moment and the structure of the nucleon.	Essentials of Nuclear Chemistry by H.J.Arnikar	Google meet
9	The net magnetic moments of the nuclei -the spin I, the magnetic moment μ_I and Nordheim rules, Salient feature of the Liquid drop model with derivations	Essentials of Nuclear Chemistry by H.J.Arnikar	Google meet
10	Salient feature of the Fermi –Gas model and Collective model.	• Essentials of Nuclear Chemistry by	Google meet

		H.J.Arnikar	
11	Nuclear reaction cross-section, Q value, Threshold energy and compound nucleus theory	• Essentials of Nuclear Chemistry by H.J.Arnikar	Google meet
12	Hot atom Chemistry and chemical effect of radioactive decay. Fast breeder reactors-Reprocessing of spent fuel: Recovery of uranium and Plutonium.	 Nuclear Chemistry by Maheshwar Sharon and Madhuri Sharon Instrumentation in Applied Nuclear Chemistry – Jan Krugers 	Google meet
13	Detectors: Cloud chamber, Bubble chamber, Geiger-Muller counter, Scintillation and Cherenkov counters	 Nuclear Chemistry by Maheshwar Sharon and Madhuri Sharon Physics and Engineering of Radiation Detection- Syed Ahmed 	Google meet
14	Particle accelerators, Linear accelerators types and application, Construction and working of Cyclotron and Synchrotron	 Nuclear Chemistry by Maheshwar Sharon and Madhuri Sharon Physics and Engineering of Radiation Detection- Syed Ahmed 	Google meet
15	Nuclear Waste Management – low level, intermediate level, high level wastes and ultimate disposal	• Essentials of Nuclear Chemistry by H.J.Arnikar	Google meet

Programme	M.Sc. Chemistry
Programme Code	P14
Semester	III
Course	Practical VI: Physical Chemistry II
Course Code	PCCHR19
Hours	4
Credits	3
Total Hours	60
Max Marks	100
Course Instructor/ Coordinator	Ms. Revathy T

Lesson Plan for the year 2020 - 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Introduction about basic terms related to potentiometric titrations.(Online)	Physical Chemistry Puri and sharma	Google meet & Google classroom
	Assignment on types of electrodes with neat sketch diagram. (offline)		
2	Determination of strength of weak acid vs strong base by potentiometric method. (online)	 Practical Physical Chemistry – B.Viswanathan, 	Google meet & Google classroom
	Model data points to be given and find strength of weak acid by plotting graph.	P.S. Raghavan • Basic Principles of Practical Physical Chemistry - V. Venkateswaran, R. Veeraswamy, A. R. Kulandaivelu	

3	Introduction about basic terms related to conductometric titrations.(Online) Assignment on mobility of different ions, strong electrolyte, weak electrolyte, dissociation constant, infinite dilution and common ion effect.	Physical Chemistry Puri and sharma	Google meet & Google classroom
4	Determination of strength of weak acid vs strong base by conductometric titration. (online) Model data points to be given and find strength of weak acid by plotting graph.	 Practical Physical Chemistry – B.Viswanathan, P.S. Raghavan Basic Principles of Practical Physical Chemistry - V. Venkateswaran, R. Veeraswamy, A. R. Kulandaivelu 	Google meet & Google classroom
5	Determination of strength of strong acid vs strong base by potentiometric method. (online) Model data points to be given and find strength of strong acid by plotting graph.	 Practical Physical Chemistry – B.Viswanathan, P.S. Raghavan Basic Principles of Practical Physical Chemistry - V. Venkateswaran, R. Veeraswamy, A. R. Kulandaivelu 	Google meet & Google classroom
6	Determination of strength of strong acid vs strong base by conductometric titration. (online) Model data points to be given and find strength of strong acid by plotting graph.	 Practical Physical Chemistry – B.Viswanathan, P.S. Raghavan Basic Principles of Practical Physical Chemistry - V. Venkateswaran, R. Veeraswamy, A. R. Kulandaivelu 	Google meet & Google classroom
7	Determination of strength of strong acid and weak acid vs strong base by conductometric titration. (online) Model data points to be given and find strength of strong acid and weak acid by plotting graph.	 Practical Physical Chemistry – B.Viswanathan, P.S. Raghavan Basic Principles of Practical Physical Chemistry - V. 	Google meet & Google classroom

		Venkateswaran, R.	
		Veeraswamy, A. R.	
0		Kulandaivelu	C1
8	Clarifying doubts regarding the experiments	-	Google meet
	discussed.(online)		& Google
	Vive test for all the 5 every ments (affling)		classroom
0	Viva test for all the 5 experiments(offline)	G	C1
9	Introduction to basics of UV spectroscopy and	• Spectrometric	Google meet
	formulas and concepts required to interpret UV	Identification of	& Google classroom
	Spectrum.(online)	Organic D.M.	Classroom
	Assignment on different types of transition in	Compounds - R.M.	
	Assignment on different types of transition in	Silverstein, G.C.	
	UV spectra.(offline)	Bassler and T.C.	
10	Intermediation of two comple LIV spectra for	Morril	Cooglamant
10	Interpretation of two sample UV spectra for the calculation of molecular data and	• Introduction to	Google meet
	the calculation of molecular data and identification of functional group.(online)	spectroscopy – Pavia,	& Google classroom
	identification of functional group.(offine)	Lampman, Kriz	Classiooni
	Assignment on examples of chromophores,		
	auxochromes and its effect in UV spectra.		
11	Interpretation of two sample UV spectra for	Introduction to	Google meet
11	the calculation of molecular data and	spectroscopy – Pavia,	& Google
	identification of functional group.(online)	Lampman, Kriz	classroom
	group (common	Eampman, 1112	614 651 6 6111
	Assignment on different types of transition		
	observed in the sample spectra given.(offline)		
12	Interpretation of two sample UV spectra for	• Introduction to	Google meet
	the calculation of molecular data and	spectroscopy – Pavia,	& Google
	identification of functional group.(online)	Lampman, Kriz	classroom
	Assignment on calculation of λmax and εmax		
	theoretically by woodward fieser rules in the		
	sample spectra given.(offline)		
1.2		****	C 1
13	Introduction to basics of IR spectroscopy and	• Vibrational	Google meet
	formulas and concepts required to interpret IR	Spectroscopy: Theory	& Google
	Spectrum.(online)	and Applications –	classroom
	Poster on different functional groups and its	D.N.Sathyanarayana	
	Poster on different functional groups and its corresponding absorption frequency (offline)		
14	Introduction to physical concept behind	Vibrational	Google meet
17	Vibrational spectroscopy (IR spectroscopy).	Spectroscopy: Theory	& Google
	(online)	and Applications –	classroom
	()	D.N.Sathyanarayana	210010011
	Assignment on simple problems related to	2.11.000170110101010	
L	1 Garage to problems related to	l .	

	vibrational spectroscopy. (offline)		
15	Interpretation of two sample IR spectra for the	Vibrational	Google meet
	calculation of force constant, zero point	Spectroscopy: Theory	& Google
	energy, different modes of vibration possible	and Applications –	classroom
	and its frequency .(online)	D.N.Sathyanarayana	
		• Inverse Problems of	
	Assignment on different modes of vibration in	Vibrational	
	a molecule.(offline)	spectroscopy-	
		A.G.Yagola, I.V.	
		Kochikov, G.M.	
		Kuramshina.	

Programme	B.Sc Chemistry
Programme Code	U17
Semester	IV
Course	GENERAL CHEMISTRY – IV
Course Code	UCCHE19
Hours	2
Credits	5
Total Hours	30
Max Marks	100
Course Instructor/ Coordinator	Ms. T. Revathy

Lesson Plan for the year 2020 - 2021

Week	Portions to be covered	Reference	Platform (LMS)
1	Nitrogen family - preparations, properties and uses of hydrazine. Structure of N_2O , NO and N_2O_5	 Modern Inorganic Chemistry - R.D.Madan Textbook of Inorganic Chemistry- P.L Soni 	Google meet
2	Structure of H ₃ PO ₄ , H ₃ PO ₃ , PCl ₃ , PCl ₅	• Modern Inorganic Chemistry - R.D.Madan	Google meet

		Г	
		• Textbook of	
		Inorganic	
		Chemistry-	
		P.L Soni	
3	Oxygen Family - comparative study of	• Modern	Google meet
	compounds- halides- Hexafluorides,	Inorganic	
	Tetrahalides, Dihalides, Dimeric	Chemistry -	
	monohalides.	R.D.Madan	
		• Textbook of	
		Inorganic	
		Chemistry-	
		P.L Soni	
4	Oxygen Family - comparative study of	• Modern	Google meet&
	compounds- Oxides- Monooxides,	Inorganic	Google
	Dioxides, Trioxides	Chemistry -	classroom
	andHeptoxides,oxyacids.	R.D.Madan	
		• Textbook of	
		Inorganic	
		Chemistry-	
		P.L Soni	
5	Halogens - Comparative study of elements	• Modern	Google meet
	and compounds of halogens- hydracids,	Inorganic	
	oxyacids.	Chemistry -	
		R.D.Madan	
		• Textbook of	
		Inorganic	
		Chemistry-	
		P.L Soni	
6	Inter halogen compounds,Pseudohalogens-	• Modern	Google meet
	comparison of halogens and pseudo	Inorganic	_
	halogens	Chemistry -	
		R.D.Madan	
		• Textbook of	
		Inorganic	
		Chemistry-	
		P.L Soni	
7	Noble gases - Position in the periodic table,	Modern	Google meet&
	Clathrates and its applications,	Inorganic	Google
	Hybridisation and geometry of XeF ₂ ,XeF ₄ ,	Chemistry -	classroom
	1		
	XeF ₆ and XeOF ₄	R.D.Madan	

		• Textbook of Inorganic Chemistry-P.L Soni	
8	Aliphatic Nucleophilic Substitution - mechanism of $S_N 1$ and $S_N 2$ reactions	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet
9	Mechanism of S_N i reactions. Effect of structure of substrate, solvent, nucleophile and the leaving group	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet& Google classroom
10	Aromatic nucleophilic substitution - benzyneand intermediate complex mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet

11	Effect of substituents on reactivity,Orientation and reactivity in substituted benzenes	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet
12	Aromatic electrophilic substitution reaction in benzene and substituted benzenes-nitration and halogenation	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet
13	Sulphonation, Friedel-Craft's acylation and alkylation reaction mechanism	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet& Google classroom
14	Elimination reaction: Types, orientation of double bond- Hoffmann and Saytzeff's rules, Cis and trans eliminationsmechanisms.	• Advanced Organic Chemistry- B.SBahl,	Google meet& Google classroom

15	Mechanisms of E1 and E2 reactions and	and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma Advanced	Coogle meet
15	evidences. Elimination vs Substitution.	 Advanced Organic Chemistry- B.SBahl, and Arun Bahl Modern Organic Chemistry- M.K Jain and S.C Sharma 	Google meet

Lesson Plan for the year 2020 - 2021 (ODD SEMESTER)

UCCHD20-GENERAL CHEMISTRY-III

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Calculation of Formula weight or Molecular weight and Mole concept. Relationship between Molar Mass, Mole and Avagadro Number	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley & William Robinson	Google Classroom
Week 2	UNIT – 1: Solutions- definition and properties, concentration terms, Molarity, Formality and Normality – definition, mathematical expression and Comparison.	1. Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley & William Robinson. Modern Analytical Chemistry by David Harvey	Google Classroom
Week 3	UNIT - 1: Equivalent weight calculation – for an acid, base, oxidizing agent. Volumetric Analysis- principle. Definition of Titrant, Titrand and Indicator.	Chemistry 2e by Paul Flowers, Klaus Theopold, Richard Langley &William Robinson. Modern Analytical Chemistry by David Harvey	Google Classroom
Week 4	UNIT – 1: Preparation of Solutions and Standardization of Commercial acids. Primary and Secondary standards – Characteristics with Examples.	Modern Analytical Chemistry by David Harvey	Google Classroom
Week 5	UNIT – 1: Theory of Acid-base titrations. Theory of acid-base indicators.	Analytical Chemistry by Gary Christian	Google Classroom
Week 6	UNIT – 1: Theory of Redox titrations. Theory of Redox indicators.	Analytical Chemistry by Gary Christian	Google Classroom
Week 7	UNIT – 1: Theory of Complexometric titrations and	Analytical Chemistry by Gary Christian	Google Classroom

	their indicators.		
Week 8	UNIT – 1: Theory of Iodometry and Iodimetry titrations and their indicators.	Analytical Chemistry by Gary Christian	Google Classroom
Week 9	UNIT – 1:Theory of Precipitation titrations and adsorption indicators.	Analytical Chemistry by Gary Christian	Google Classroom
Week 10	UNIT – 1: Types of errors, minimizing the errors, accuracy and precision, significant figures.	Modern Analytical Chemistry by David Harvey	Google Classroom
Week 11	UNIT – V: Three-dimensional close packing of spheres – ccp and hcp – characteristics of hcp, ccp and bcc structures.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
Week 12	UNIT – V: interstitial sites in closely packed arrangement of atoms – triangular, tetrahedral and octahedral sites, radius ratio rule and its effect on the shapes of ionic crystals	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
Week 13	UNIT – V: structures of ionic crystals-NaCl, CsCl, ZnS, Wurtzite, Fluorite and Rutile.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
Week 14	UNIT – V: Imperfections in crystal systems – Schottky and Frenkel defects, metal excess and metal deficiency defects.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom
Week 15	UNIT – V: Semiconductors - band theory of solids, intrinsic semiconductors, extrinsic semiconductors -n-type and p-type semiconductors.	Principles of Physical Chemistry by B. R. Puri, L. R Sharma and M.S Pathania	Google Classroom

UGCHB520: NON MAJOR ELECTIVE: COSMETICS AND DYES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT - 1 : Cosmetics Definition and Classification.	Chemistry in Daily life by Kirpal Singh	Google Classroom
Week 2	UNIT – 1: Components of Cosmetics. Deodrants and Antiperspirants – definition and differences.	Chemistry in Daily life by Kirpal Singh	Google Classroom
Week 3	UNIT - 1: Aerosols, Perfumes and Fragrances with examples. Pros and Cons of synthetic cosmetics.	Chemistry in Daily life by Kirpal Singh	Google Classroom
Week 4	UNIT – 2: Basic Concept of Cosmetic Safety.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Google Classroom
Week 5	UNIT – 2: Safety test items and Evaluation methods.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Google Classroom
Week 6	UNIT – 2: Testing on human – Patch test and Usage Test.	Handbook of Cosmetic science and Technology by Marc Paye, Andre´ O. Barel, and Howard I. Maibach	Google Classroom
Week 7	UNIT – 3: Herbal cosmetics – fruits and vegetables as haircare and skin care (apple, apricot, banana, carrot, cucumber, honey, lemon, tomato).	Herbal Principles and Cosmetics by Roland Hardman	Google Classroom
Week 8	UNIT – 3: Perfumes and fragrances, skin care herbs – olive oil, sesame oil, black pepper, amla. Aromatherapy – various oils used in aromatherapy and their significance.	Herbal Principles and Cosmetics by Roland Hardman	Google Classroom

Week 9	UNIT – 3: Standardization of herbs – importance, methods employed for standardization of herbal extracts.	Herbal Principles and Cosmetics by Roland Hardman	Google Classroom
Week 10	UNIT – 4: Dyes - definition of dyes, requirements of a good dye i.e. Colour, chromophore and auxochrome, solubility, linearity, coplanarity, fastness, substantivity, definition of fastness and its properties and mordants with examples.	Applied Chemistry by Jayashree Ghosh	Google Classroom
Week 11	UNIT - 4: Natural and Synthetic Dyes - natural dyes - definition and limitations of natural dyes. Examples and uses of natural dyes with respect to henna, turmeric, saffron, indigo, chlorophyll –names of the chief dyeing material/s in each natural dye.	Applied Chemistry by Jayashree Ghosh	Google Classroom
Week 12	UNIT – 4: Synthetic dyes - definition of synthetic dyes, primaries and intermediates.	Applied Chemistry by Jayashree Ghosh. The Chemistry of Synthetic Dyes and Pigments by Lubs HA and Roberts E.	Google Classroom
Week 13	UNIT - 5: Textile uses of dyes - impact of the textile and leather dye Industry on the environment with special emphasis on water pollution.	Fundamental Concepts of Environmental Chemistry by Sodhi G S	Google Classroom
Week 14	UNIT – 5: biomedical uses – Tablets, syrups and capsules, DNA markers and therapeutics. Dyes in food and cosmetics.	Colorants for Non- textile applications by Freeman H S. & Peters A T.	Google Classroom
Week 15	UNIT – 5: Properties of dyes used in food and cosmetics, commonly used food colors and their limits. Dyes sensitized solar cells – A tool to overcome the future energy crisis.	Natural Food colorants by Hendry G A F and Houghton J D. Colorants for Non- textile applications by Freeman H S. & Peters A T.	Google Classroom

PECHE20: ELECTIVE IIIA: ANALYTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Thermal Analysis – Introduction and types.	Analytical Chemistry by Usha Rani.	Google Classroom
Week 2	UNIT – 1: Thermo Gravimetric Analysis (TGA)- principle, instrumentation.	Analytical Chemistry by Usha Rani.	Google Classroom
Week 3	UNIT – 1: Thermogravimetric curves of CaC ₂ O ₄ H ₂ O, MgCr ₂ O ₄ , Hg ₂ CrO ₄ , Ag ₂ CrO ₄ , Ag _N O ₃ and Cu(NO ₃) ₂ .	Instrumental Methods of Chemical Analysis by A K Srivatasava	Google Classroom
Week 4	UNIT – 1: Factors affecting TGA, Applications of TGA.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Google Classroom
Week 5	UNIT – 1: DTG – Principles, Comparison of DTG & TGA.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Google Classroom
Week 6	UNIT – 1: Differential Thermal Analysis (DTA) - principle, instrumentation, simultaneous TGA and DTA curves and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava. Analytical Chemistry by Usha Rani.	Google Classroom
Week 7	UNIT – 1: Differential Scanning Calorimetry (DSC) principle, instrumentation and applications.	DTA and DSC Haines et al., Chapter 5; Handbook of Thermal Analysis and Calorimetry; Vol.1 Principles and Practice, 1998.	Google Classroom
Week 8	UNIT – 1: Thermometric titrations - principle, instrumentation and applications.	Instrumental Methods of Chemical Analysis by A K Srivatasava; Practical Thermometric Titrimetry (A monograph) by Thomas Smith	Google Classroom
Week 9	UNIT – 4: Computers in Chemistry - introduction to computers - hardware, software and programming languages.	C Programming – The ultimate way to learn the fundamentals of C-Language by Harry H. Chaudary	Google Classroom

Week 10	UNIT – 4: C – Programming:	C Programming – The	Google Classroom
	variables, constant, operators, input	ultimate way to learn	
	and output functions.	the fundamentals of C-	
		Language by Harry H.	
*** 1 11	777777 4 6 5	Chaudary	G 1 61
Week 11	UNIT – 4: C – Programming:	C Programming – The	Google Classroom
	control statement, loop.	ultimate way to learn	
		the fundamentals of C-	
		Language by Harry H.	
W 1 10	HINTE A C T	Chaudary	G 1 C
Week 12	UNIT – 4: Go To statement –	C Programming – The	Google Classroom
	functions, arrays	ultimate way to learn	
		the fundamentals of C-	
		Language by Harry H.	
XX 1 12		Chaudary	C 1 C1
Week 13	UNIT – 4: pointers. Calculation of	C Programming – The	Google Classroom
	pH & Solubility Product.	ultimate way to learn the fundamentals of C-	
		Language by Harry H. Chaudary	
Week 14	UNIT – 4: calculation of bond	C Programming – The	Google Classroom
Week 14	energy using Born-Lande equation.	ultimate way to learn	Google Classioolii
	Introduction to internet service	the fundamentals of C-	
	provided in India.	Language by Harry H.	
	provided in mara.	Chaudary;	
		Dictionary of	
		Computer and Internet	
		Terms by Douglas A	
		Downing, Michael	
		Covington & Melody	
		Mauldin Covington.	
Week 15	UNIT – 4: Terms used in internet,	Dictionary of	Google Classroom
	www, http, html, TCP/IP band	Computer and Internet	<i>5</i>
	width, dialup service. ISDN and	Terms by Douglas A	
	Search Engines.	Downing, Michael	
		Covington & Melody	
		Mauldin Covington.	

Lesson Plan for the year 2020 - 2021 (EVEN SEMESTER)

ENVIRONMENTAL STUDIES

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 1: Multidisciplinary nature of Environmental Studies, Scope and Importance	UGC Syllabus book	Google Classroom

Week 2	UNIT – 1 : Natural resources: Overexploitation of Water, Land and Energy.	UGC Syllabus book	Google Classroom
Week 3	UNIT - 1 : Natural Resources: Forest and Mineral	UGC Syllabus book	Google Classroom
Week 4	UNIT – 2: Ecosystem: Types, Structure & Function.	UGC Syllabus book	Google Classroom
Week 5	UNIT – 2: Ecosystem- Forest & Grassland.	UGC Syllabus book	Google Classroom
Week 6	UNIT – 2: Desert & acquatic Ecosystem.	UGC Syllabus book	Google Classroom
Week 7	UNIT – 3: Biodiversity & its values.	UGC Syllabus book	Google Classroom
Week 8	UNIT – 3: India as a nation of MEGA biodiversity.	UGC Syllabus book	Google Classroom
Week 9	UNIT – 3:Threats to Biodiversity & its conservation.	UGC Syllabus book	Google Classroom
Week 10	UNIT – 4: Types of Environmental Pollution.	UGC Syllabus book	Google Classroom
Week 11	UNIT - 4: Water, Air, Noise & Soil pollution – Causes, Effects.	UGC Syllabus book	Google Classroom
Week 12	UNIT – 4: Rain water Harvesting and Solid Waste Management.	UGC Syllabus book	Google Classroom
Week 13	UNIT – 5: Human Population & Environmental Pollution act.	UGC Syllabus book	Google Classroom
Week 14	UNIT – 5: Climate Change, Afforestation and Sustainable Development.	UGC Syllabus book	Google Classroom
Week 15	UNIT – 5: Environmental Protection Act.	UGC Syllabus book	Google Classroom

PECHC20: ELECTIVE IIA: PHARMACEUTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform (LMS)
Week 1	UNIT – 3: Drug discovery- introduction. Discovery of Penicillin	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 2	UNIT – 3: Discovery of Lead compounds	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation

Week 3	UNIT – 3: Lead modification – Modification of functional group. SAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 4	UNIT – 3: QSAR – Hammett Equation, Taft equation, Hansch Analysis	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 5	UNIT – 3: Craig Plot, Drug Design using QSAR	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 6	UNIT – 3: Computer Aided Drug Design (CADD).	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 7	UNIT – 4: Cancer Chemotherapy – Types of Neoplasm	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 8	UNIT – 4: Causes of Cancer, Tumor Formation, Mechanism and metastasis.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 9	UNIT – 4: Determination of drug response; Cytotoxic anticancer drugs – Alkylating agents and its mode of action.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 10	UNIT – 4: Antimetabolites, antitumor antibiotics, pyrimidine antagonist.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 11	UNIT – 4: Treatment of Cancer – Radiation, Surgery and Chemotherapy.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 12	UNIT - 5: Podophyllotoxins, mechanism of action, endochrine agents, taxol.	Medicinal Chemistry by V K Ahuwalia & Madhu Chopra	PPT Presentation
Week 13	UNIT – 5: Toxins and their medicinal value – Introduction and classification.	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	PPT Presentation
Week 14	UNIT – 5: Toxins from Microbes to reptiles.	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	PPT Presentation
Week 15	UNIT – 5: Anticoagulants – Coagulation pathway and anticoagulants therapy.	Pharmaceutical, applied and Natural products Chemistry by P S Kalsi & Sangeeta Jagtap	PPT Presentation

Lesson Plan for the year 2020-2021

Odd Semester

UECHA 16 - Analytical Chemistry

Week	Portions to be covered	Reference	Platform
1	Unit IV Infrared Spectroscopy – Principle – types of stretching and bending vibrations – vibrational frequencies of CO2 and H2O.	Spectroscopy, Gurdeep R. Charwal, Sham K. Anand, Himalaya Publishing House, Fifth Revised and Enlarged Edition – 2001.	Google Meet
2	Instrumentation – block diagram – source-monochromator-sample cell- sampling techniques – detector and recorders	Instrumetal analysis, Skoog, Holler and Crouch, Cengage Learning, Eleventh Reprint 2012	Google Meet
3	Identification of simple organic molecules from characteristic absorption bands.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.	Google Meet
4	Unit V Nuclear Magnetic Resonance Spectroscopy – Principle – Instrumentation with its different components Chemical shift, factors affecting chemical shift - shielding mechanism	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.	Google Meet
5	Number of signals, spin-spin coupling, coupling constants-splitting of signals. NMR spectrum of simple organic compounds – alcohols, aldehydes and ketones.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.	Google Meet
6	Mass Spectrometry – Principle – Instrumentation. Mass spectrum of simple organic compounds – alcohols, aldehydes and ketones.	Elementary Organic Spectroscopy, Y.R. Sharma, S. Chand and Company limited, Reprint 2012.	Google Meet

7	Unit I Principle of gravimetric analysis, characteristic of precipitating agents – choice of precipitants and condition for precipitation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.	Google Meet
8	Specific and selective precipitants -DMG-cupferron, salicylaldehyde, ethylene diamine – use of sequestering agents.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.	Google Meet
9	Co-precipitation – post precipitation – differences – reduction of error precipitation from homogeneous solution – Calculation in gravimetric methods. Data analysis – Precision and accuracy, types of errors, standard deviation.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sand, Reprint 2017.	Google Meet

PECHE 19 - Analytical Chemistry

Week	Portions to be covered	Reference	Platform
1	Unit III	P.S. Subramanian, K. Rengarajan,	Google
	Atomic absorption spectrometry -	Elements of Analytical	Meet
	principle, terms involved,	Chemistry, R. Gopalan, Sultan	
	measurement of absorption,	chand & Sons, Reprint 2017.	
	instrumentation with block	http://delloyd.50megs.com	
	diagram -radiation source,	/moreinfo/AA.html	
	atomization unit, oxidizing agents,		
	burners, monochromators,		
	detectors, amplifier and recorder		
	devices. Interferences in AAS:		
	spectral, chemical, ionization,	https://www.sciencedirect.com	
	dissociation of metal compounds,	/science/article/pii/058485476	
	difference between atomic	8800400	
	absorption and emission method,		

	advantages and disadvantages of AES, advantages of AAS over flame emission spectroscopy, disadvantage of AAS.		
2	Applications of AAS: Some typical analysis like determination of metal in biological system, lead in petrol.	Willard Merritt, Dean and Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors Pvt. Ltd, Seventh Edition. https://www.sciencedirect.com/science/article/abs/pii/0039914086800650	Google Meet
3	Photo acoustic spectroscopy – instrumentation with block diagram and applications	Willard Merritt, Dean and Settle, Instrumental Methods of Analysis, CBS Publishers and Distributors Pvt. Ltd, Seventh Edition https://www.shimadzu.com/an /service-support/technical- support/analysis- basics/ftirtalk/talk7.html	Google Meet
4	Unit II Gas chromatography, principle, types of instrumentation with block diagram – carrier gas, sample injection system, column, thermal compartment, detectors, recorder and application.	Gary D. Christian, Analytical chemistry, Sixth edition, , Third Reprint 2007 https://microbenotes.com/gas-chromatography/	Google Meet
5	High Pressure Chromatography – principle, characteristic of HPLC, instrumentation, applications comparison of HPLC with GLC.	Gary D. Christian, Analytical chemistry, Sixth edition, , Third Reprint 2007 https://microbenotes.com/ high-performance-liquid-chromatography-hplc	Google Meet
6	Super Critical Fluid Chromatography – principle, properties, instrumentation,	Skoog, Holler and Crouch, Instrumetal analysis, Cengage Learning, Eleventh Reprint 2012	Google Meet

	application with other types of chromatography, Supercritical fluid extraction and applications	https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Book%3A_Physical_Methods_in_Chemistry_and_Nano_Science	
7	Unit V Environmental Chemistry: Water quality standards BOD, COD-Analysis of waste water and its treatment – salinity of water and its treatment – Reverse Osmosis.	Nicholas P. Cheremisinoff, Handbook of water and wastewater treatment technologies, , N&P Limited, Reprint 2020 http://www.wepa- db.net/policies/law/laos/stand ards.htm	Google Meet
8	Toxic Chemicals in environment – Toxicity of Mercury, Lead, Cadmium and Arsenic.	M.S. Yadav, Instrumental Methods of Chemical analysis, Campus Books International 2006. https://academic.oup.com/labm ed/articlepdf/42/12/735/2494 2624/labmed42-0735.pdf	Google Meet
9	Green Chemistry: Principle, conditions followed in green synthesis, Carbon –Carbon bond formation in aldol condensation like silyl enol ethers in aqueous media solid phase, Supercritical water and asymmetric aldol condensation.	M.M. Srivastava and Rashmi Sanghi, Chemistry for Green Environment, Publishing House, Third Reprint 2011. https://www.acs.org/content/a cs/en/greenchemistry/principle s/12-principles-of-green- chemistry.	Google Meet

UACHA20 – Allied Chemistry

Week	Portions to be covered	Reference	Platform
1	Unit I	B.S Bahl and Arun Bahl,	Google Meet
	1.1 Aromatic compounds- Introduction	Advanced Organic	
		Chemistry, Sultan Chand	
		and Co., Ltd., Reprint 2007.	
2	Aromaticity - Huckel's rule. Application	B.S Bahl and Arun Bahl,	Google Meet
	of Huckel's rule for benzenoid (benzene,	Advanced Organic	
	naphthalene, anthracene, pyridine)	Chemistry, Sultan Chand	
		and Co., Ltd., Reprint 2007	

3	1.2 Application of Huckel's rule for	B.S Bahl and Arun Bahl,	Google Meet
	nonbenzenoid compounds and (Azulene	Advanced Organic	
	and ferrocene . Preparation, properties	Chemistry, Sultan Chand	
	and uses of naphthalene	and Co., Ltd., Reprint 2007.	
4	Unit III	M.G. Arora and M. Singh,	Google Meet
	3.1 Polymer chemistry – classification of	Polymer Chemistry, Anmol	
	polymer.	Publications PVT LTD,	
		Reprint 1996.	
5	3.2 Natural and synthetic rubbers with	M.G. Arora and M. Singh,	Google Meet
	examples	Polymer Chemistry, Anmol	
		Publications PVT LTD,	
		Reprint 1996.	
6	3.3 Preparation and uses of nylon 6,6	G.S. Misra, Introduction of	Google Meet
	and terylene	Polymer Chemistry, New	
		Age International	
	** ***	Publisher, 2005.	0 1 16
7	Unit V		Google Meet
'		MANC	doogic Meet
,	5.1 Industrial chemistry – Fuel gases –	V.Veeraiyan and A.N.S	doogie weet
,	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas,	Vasudevan, Text Book of	doogie Meet
,	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and	Vasudevan, Text Book of Allied Chemistry, High	doogle Meet
,	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House,	doogle Freet
	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only)	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003.	
8	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S	Google Meet
	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of	
	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of Allied Chemistry, High	
	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of	
	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House,	
8	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer gas(composition and uses only)	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003.	Google Meet
8	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer gas(composition and uses only)	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S	Google Meet
8	5.1 Industrial chemistry – Fuel gases – natural gas, water gas, semi water gas, carbureted water gas, oil gas and producer gas (composition and uses only) Industrial chemistry –Carbureted water gas, oil gas and producer gas(composition and uses only)	Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of Allied Chemistry, High Mount Publishing House, 2003. V.Veeraiyan and A.N.S Vasudevan, Text Book of	Google Meet

Auxilium College(Autonomous), Gandhi Nagar, Vellore – 632 006. Lesson Plan for the year 2020-2021 (EVEN SEMESTER)

UECHE 16 – ELECTIVE IIIA: PHARMACEUTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform(LMS)
Week 1	UNIT-I: Definition of the following terms: Pharmacy, Pharmacopoeia, pharmacology, pharmacophore, drug, bacteria, virus, vaccine, properties of drugs. Causes, symptoms and drugs for anaemia, jaundice and cholera.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and Board PPT Lectures
Week 2	UNIT-I: Causes, symptoms and drugs for malaria, filarial, dengue fever, chikungunya, tyhoid. Diagnostic test for sugar, salt and cholesterol in blood and urine	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and Board PPT Lectures
Week 3	UNIT-I: Indian medicinal plants - medicinal uses and chemical present in neem, keezhanelli, mango, adathoda, thoothuvalai, hibiscus, rose, tulsi, turmeric, curry leaves and ficus.	A Textbook of Pharmaceutical Chemistry by Jaya Ghosh .	Chalk and Board PPT Lectures
Week 4	UNIT-II: Sulphonamides – definition, synthesis and therapeutic uses of prontosil, sulphathiozole and sulphafurazole	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Board PPT Lectures
Week 5	UNIT -II: Antibiotics – definition, conditions, classifications. Properties, therapeutic uses and structure activity relationship of penicillin and streptomycin.	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Board PPT Lectures
Week 6	UNIT -II: Properties, therapeutic uses and structure activity relationship of chloramphenicol and tetracyclines. Antiseptics and disinfectants- definition and distinction, phenolic and chloro compounds.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and Board PPT Lectures
Week 7	UNIT-III: 1 Analgesics – definition, narcotic and non narcotic - Morphine and its derivatives - pethidine, methodone. Antipyretic analgesics – salicylic derivatives – paracetamol and Ibuprofen.	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Board PPT Lectures
Week 8	UNIT-III: Anaesthetics – definition, characteristics -volatile – nitrous oxide, ether, chloroform and cyclopropane . Non-volatile - thiopental sodium, methohexitone and propanidid.	Chemistry by Jayashree Ghosh.	PPT Lectures
Week 9	UNIT-III: Toxicology of drugs : principle-dose/effect(LD, ED).	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Board PPT Lectures

Week 10	UNIT-IV: Cancer: definition, causes, treatment, drugs used (antineoplastics), alkylating agents, antimetabolites, plant products.	Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and PPT Lectures	Board
Week 11	UNIT-IV: AIDS - causes, symptoms, prevention, AZT, DDC Hypoglycemic drugs, diabetes - types -causes, control, insulin- preparation, uses. Oral hypoglycemic agents.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and PPT Lectures	Board
Week 12	UNIT-IV: Anticonvulsant agents - definition, types. Barbiturates, hydantoins, oxazolidenediones, succinimides. Blood - grouping, composition, R h factor. Blood pressure - hypertension and hypotension, treatment.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and PPT Lecture	Board
Week 13	UNIT-V: Cardiovascular drugs – definition, action, cardiac glycosides, anti arrhythmic drugs-quinidine, propanol hydrochloride and uses. Anti hypertensive agents – aldomet, pentolinium tartrate, reserpine and uses.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Criain silv	Board
Week 14	UNIT-V: Anti hypertensive agents – aldomet, pentolinium tartrate, reserpine. Anti anginal agents – nitrites, dipyridamole, vasodilator, tolazoline hydrochloride, isoxsuprine hydrochloride, sodium nitroprusside, hydrallazine hydrochloride and papaverine.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chais	Board
Week 15	UNIT-V: Organic pharmaceutical aids- preservatives, properties, common preservatives used - Colouring agents Sweetening agents- Flavouring agents.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	Chalk and PPT Lectures	Board

PECHC 20 – ELECTIVE IIA: PHARMACEUTICAL CHEMISTRY

Week	Portions to be covered	Reference	Platform(LMS)
Week 1	UNIT-I: 1.1 Classification of drugs: biological, Chemical, commercial consideration, lay public.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lectures
Week 2	UNIT-I 1.2 Mechanism of drug action and metabolism of Drugs: mechanism of action, drug receptors binding, biological responses - covalent bond, hydrogen bond, Van der Waal's	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lectures
Week 3	forces. UNIT-I: 1.3 Metabolism of drugs - chemical pathways - phase I and phase II reactions, Biotransformation.	A Textbook of Pharmaceutical Chemistry by Jaya Ghosh.	PPT Lectures

Week 4	UNIT-I: 1.4 Routes of administration of drugs.	Pharmaceutical Chemistry by PPT Lectures S. Lakshmi.	
Week 5	UNIT -I: 1.5 Absorption of drugs: factors affecting absorption.	Pharmaceutical Chemistry by S. Lakshmi.	PPT Lectures
Week 6	UNIT -I: 1.6 Digestion and absorption of proteins and fats.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lectures
Week 7	UNIT-II: 2.1 Assay of drugs - Chemical, biological and immunological assay.	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Boa PPT Lectures
Week 8	UNIT-II: 2.2 Psychopharmacology- Antipsychotic drugs, phenothiazines, LSD, Marijuana.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lectures
Week 9	UNIT-II: 2.3 Barbiturates mechanism of action.	Pharmaceutical Chemistry by S. Lakshmi.	Chalk and Boa
Week 10	UNIT-II: 2.4 Biological role of some inorganic compounds - Sodium and their compounds, potassium and their compounds.	Pharmaceutical Chemistry by Jayashree Ghos.h	
Week 11	UNIT-II: 2.5 Calcium and their compounds, iodine and their compounds. hypoglycemic agents.	A Textbook o Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lectures
Week 12	UNIT-II: 2.6 Copper and their compounds, Zinc and their compounds.	A Textbook o Pharmaceutical Chemistry by Jayashree Ghosh.	PPT Lecture
Week 13	UNIT-V: 5.1 Nutraceuticals – Introduction.	A Textbook of Pharmaceutical Chemistry by Jayashree Ghosh	one of the second of the secon
Week 14	UNIT-V 5.2 Types - plant sources, animal sources, microbial sources, derived from all sources.		
Week 15	UNIT-V: 5.3 Role of antioxidants.	A Textbook Pharmaceutical Chemistry b Jayashree Ghosh.	f Chalk and Bo PPT Lectures

PCCHM 19 - NATURAL PRODUCTS AND BIOORGANIC CHEMISTRY

Week	Portions to be covered	Reference	Platform(LMS)
Week 1	UNIT-V: Introduction of enzyme chemistry.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 2	UNIT-V: Terminology – Reactive site, catalytic activity and its mechanism.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 3	UNIT-V: Enzymatic mechanism of alpha chymotrypsin.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 4	UNIT-V:Immobilised enzyme chemistry.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 5	UNIT-V: Enzymes in synthetic organic chemistry.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 6	UNIT-V: Enzymes in synthetic organic chemistry.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 7	UNIT-V: Enzymes in synthetic organic chemistry.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 8	UNIT-V: Structure, biological and mechanism of coenzymes A.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 9	UNIT-V: Structure, biological and mechanism of TPP.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 10	UNIT-V: Structure, biological and mechanism of pyridoxal phosphate.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 11	UNIT-V: Structure and biological function of NAD*.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 12	UNIT-V: Structure and biological function of NADP.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 13	UNIT-V: Structure and biological function of FAD.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 14	UNIT-V: Structure and biological function of lipoic acid.	Enzymes chemistry by Hermann Dugas.	Chalk and Board
Week 15	UNIT-V: Structure and biological function of vitamin B ₁₂ .	Enzymes chemistry by Hermann Dugas.	Chalk and Board

LESSON PLAN FOR - 2020 - 2021. ODD SEMESTER

PAPER	CLASS
	I.B.Sc. Biochemistry
Allied chemistry - III	II. B. Sc. Physics
SBE: Agricultural chemistry	I. Brom I.B.Sc
chemistry	

LESSON PLAN FOR - 2020 - 202) EVEN SEMESTER

PAPER	CLASS
Allied chemistry - IT	J. B. Sc. Biochemistry
Allied Chemistry - IV	II. B. Sc. physics
Allied practical	I. B. Sc. Biochemistry
SBE. Agricultural chemistry	II. B. Sc. Physics I. B. com J. B. Sc IBBA IBCA.
Enveronmental studies	II. B. Sc. Biochemistry

II. B. Sc. physics UACHB419 - Allied -II: Chemistry -II

WEEK	PORTION TO BE COVERED	REFERENCES	PLAT
1	Unit-I: 1.1 (0-ordination chemistry- definition of the terms-ligano chelates, chelation. 1.2 Nomenclature of mono nuclear complex.	V. Veeraigan and	FORM Groogle mest
2	1.3 Werner's and pauling theory, &idqwick's theory, Effective alomic Number Jule	V. Veeraiyon and A.N.S Vasudevan, Text book & Allied Chemistry - 2003.	Google
3.	1.4 Chemistry & EDTA, haemoglobin and chlorophy).	V. Veeraigan and A.N.S Vasudwan, Text book of Allied Chemistry - 2003.	Google meet.
4.	Unit-I: 2. I somerism - types of Psomerism, Stereo isomerism optical isomerism - (ause optical autivity. 2. 2 optical isomerism of lactic and and tartaric acid, R-s notation (one asymmetric carbon atom). Racemisation and resolution.	1. R.D Madan ?norganic chem?stry - 2004. 2. B.R puri L.R.Sharma and kaita. K. C principle & ?norganic chem?stry - 2004.	broogle meet.
5.	2.3 breomentrical isomerism of malercarid and furnaric and, E-z notation	P.D Madan ?norgan?c chemistry - 2004.	bogle meet

WEEK	PORTION TO BE COVERED	REFERENCES	FOR
6.	Tautomerism - keto-enol tautomerism	R.D. Madhan Inorganic chemistry	61000
7.	Unit-III 8.1 Foric aquilibria - 8trong and weak electrolytes, common ron ettert. Definition of ptt, pkg, pkb and pkw. Butter solution- Itenderson equations. 3.2 Electrochemical cells— Lone truction, definition of emf, standard electrode potentials.	and M.s pathania principle q phyrical	1
8.	3.3 Types of cells-primary and Sevendary, Standard hydrogen electrode - Calomel electrode.	change M. Spathania	Google meet
9.	3.4 Electrophoresis, electro -dialysis and electro osmosis.	B. R puri and L. R Sharing, M. Spathania principle of physical Chemistry_ 2004.	brogle meet.
10.	4.1 photochemistry - Laws of light achsor ption - Lamberts law and Lamberts - Been's low. 4.2 brotthur - Draper's law and stank - Einstein's law of photochemical	Professional Contract of the C	broogle

MEEN	PORTION TO BE COVERED	PEFERENCES	PLAT
11.	4.3 Quantum yield-examples 14.3 Quantum yield-examples 14.	B.R proi , L. R Shooting and M.S pathania, principle & physical Chamistry - 2004	broogle
12.	4.4 Jablonski diagram - floore scence, phosphorescence, photo sensitization and chemiluminescence (definition, examples and applications).	B.R puri, L. R.Sharma and M.S pathania, principle & physical chemistry - 2004.	broogle
13.	antipyretics, antisoptics, tranquilizers, sedatives and hypnotics. 5.2 Local anesthetics and general anesthetics.	B. R puri?, L. R Sharing and MS pathania, principle of Principanic G chemistry - 2004. Jayastroe Cithush A Textbook of phanime we tical chemistry - 2005	noogle meet.
14.	5.3 Antibiotics - Structure and uses of penscillin, Streptomy in and chloramphenical.		meet
15.	5.4 Causes and treatment	Tayashree bihosh	meet.

I. B. Sc. Biochemistry UACHBOO - Allied chemistry - 4

		V —	
WEEK	PORTION TO BE COVERED	REFFERENCES	PLAT
1.	Unit-I 1.1 Co-ordination chemistry -definition 9 the terms- ligands, chelater, chelation 1.2 Nomenclature 4 mononuclear complexes.	V. Veereigen and A. N.s Vasudevan, Teat book & Allied Chemistry	broogle
2	1.3 Werner's and pauling theory, Sidgwick's theory. 1.4 Effective atomic Number vale.	A.N.s Vasudevan,	Groogle
3 .	1.5 chemistry 4 EDTA 1.6 chemistry 4 haemoglobin and chlorophyll.	V. Veerouigan and A. N.S. Vausudevaen, Text book 9 Allied Chemistry.	broogle
4.	Unit-11 2.1 Isomerism-types of Psomerism. 2.2 Sterevisomerism-optical isomerism-cause optical autivity.	R.D Madhan Inorgan? chemistry - 2004	Google meet
5.	2.3 optical isomerism of lautic cuild and tartaric acid, R-s notation (one asymmetric carbon aton)	R.D Madhan Inorganic chemistry -2004	broogle meet
		R.D Madhan Frozganic chemistry -2004.	brogle

WEEK	PORTION TO BE COVERED	REFFERENCES	PLATFORM
6.	2.5 breametrical Psomurism of maleir and fumaric auds, E-z notation. 2.6 Tautomerism - keto-enol tautomerism.	R.D Madhan Inorganic Chemistry - 2004.	broogle meet.
7.	Unit-iii 8.1 Ponie equilibria - strong and weak electrolytes, Lommon ion ettect. 3.2 pefinition 9 pH, pka, pkb and pkw. Butter solution	B.R pwii, L.R Shaving and M.s pathania pronciple of physical chemistry	meet
8	3.3 Electrichemical Cells- Construction, definition 4 eml, Standard electrode potential 3.4 Types of cells-promary and secondary,	B.R puri. L.R.Sharma and M.S pathania pronúple of physical chemistry	broogle
9	3.5 principle et standard hydrogen electrode and calomel electrode. 3.6 principle et Electrophoresis electro-dialysis and electro- osnosis	THOUGHT PHYSICA	Google
10.	1) photochemistry - Lours of light cubsorption - Lamberts law and Lamberts - Beerls law 42 Grotth 4 - Droports law and Stark - Einstein's law of photochemical equivalence.	B.R pwii L.R Sheving and M.S pathouria pranciple of physical chemistry	Croogle

WEEK	POPTION TO BE LOVERED	REFFERENCES	PLAT
11.	4.3 Quantum yield (Definition) 4.4 photochemical reactions, kinetics & hydrogen and chlorine reaction	B. R puri, LR Sharma and M.s pathania principle of physica chemistry	bloogle
12.	4.6 Fluorescence, phosphorescence, photosensitization and chemilceminescence (definition, examples and applications).	B. P pwii, L. R Shoomer and His pathornia pronciple of phyrical chemistry.	bioogle maet.
		Jayashree Ghash A Tout book of Pharmaceutical Chemistry	Google meet
1	5.3 Antibiotics - Structure and Use & penicillin, Streptomyun and chloramphenical.	Jayashree Gihosh A Text book 4 pharmaceutical chemistry	broogle
	5.6 Causes and treatment	Jayashree Ghash A Text book 4 channaceutical chemistry	broogle

I.B. com / I.B.Sc.
USCHA120 - SBF: Agricultural chemistry

	SBI. Myntal	many crassing	
WEEK	PORTION TO BE LOVERED	REFERENCES	PLAT
1.	Unit-I 1.1 Agriculture - Definition - Scope à agriculture in India and Tamil Nadu. 1.2 Branches et agriculture	Sankarans and N.T Subbah mudaliar. principle of Agronomy.	broogle meet
2.	1.3 Agronomy. Ast, Science and business of crop production 1.4 Agronomical classification of crops - their importance.	Sankarian Sand V. T Subbah Mudalian. principle of Agronomy.	broogle
4.	1.5 Major crops of India and Tamil Nadu, water resources in tamil Nadu. 1.6 Factors atterting crop production - Morstone, aeriation light, temperature and nutrients.	Sankaran. Sand V.T Subbiah mutalian. pronuèple 4 Agronomy.	Google
4.	Unit -II 2.1 Soil chemistry - Introduction, Soil classification and survey 2.2 properties of soil - Soil texture and soil water.	Agronomy,	bioogle
5.	2.4 Soil minerais aina soilph.	Jayashree Gihash Fundamental Concepts of Applied Chemistry.	broogle meet.
6.	2.5 Soil audity - alkalinity and buttering soil 2.5 Soil fortility and soil	0.	

formation

4.3 Inserticides - Arsenic compounds, flusine hompounds

> 4.4 Inserticides - mercury compounds - copper compounds and sulphion compounds

Jayashree Ghosh Fundamental concepts of Applied chemistry.

broogle meet

MEEK	PORTION TO BE COVERED	REFERENCES	PLAT
12	4.5 Modern Prisenticides - Some Primportant henbrides Rodenticides.	Jours have brhach Fundamental Concepts of	Gogle meet
	Adverse environmental estats of pesticides.	Applied chemistry	
13	Unit-V		
	5.1 Fertilizers - classification Examples 4 fertilizers.	Jougashree Grash Fundamental	brogle meet
	3.2 Wille Jaron 12.	concepts of Applied chemistry	
14	5.3 ILL ettect of fertilizous 5.4 Manures, compast	Jayashree Gikosh Fundamentael	broogle ment
	and Saw	concept to Applied	0
15	5. & Farmyard manure,	chemistry	
	compost, vreinforving manure and green manure		
	5.6 Sewage and Sludge-		
	biogas production.		
	AND AFFICAN OF		
	Promorbin Length STM		

II. B. Sc. Biochenistry UNEVSIT - Environmental Studies

		UNEVSIT - ENVIRONMENT	Trace Studies	
	WEEK	PORTION TO BE COVERED	REFERENCES	PLAT
	10	Unit-IV Environmental pollution: Air pollution, water pollution, Soil pollution and Noise pollution - Causes, attests and control measures.	Environmental Studies Utic Syllabus Dr. k. kumanaswa M. Sc. ph. D editton - 2004	meet
	11		Environmental Studies Utic	Google
	12	Water management - Soid waste management.	Syllabus Dr. k. kumanaswa. M.Sc. ph.D edition	meet
	13	Unit-V Human pollution and environment,	- 2004.	
	P C	Environmental protection Act. 1986 Environment protection agencies & Internation and National)—Air & prevention and control of a collution) Act 1981, water prevention and control of a collution) Act 1976.	studies UGC	broogle
1.	pr er wo	one layer depletion.	nulios utic glabus r. k. kumataswa	Google meet
**	- po	1 dan - Sustainable development M.	Sc. ph. Pedition	

Auxilium College (Autonomous), Gandhi Nagar, Vellore-632 006

Lesson plan for the year 2020 - 2021

Odd Semester

PECHA20- POLYMER CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	I	Introduction - basic concepts of polymer science - definitions, degree of polymerization, molecular forces and chemical bonding in polymers	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
2	I	1 1 1 1	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
3	I		Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
4	I	Mechanism and kinetics of free radical and condensation polymerization, Co-ordination polymerization - mechanism using Ziegler Natta catalyst	Textbook of Polymer Science By Fred
5	III	Polymer reactions - hydrolysis, acidolysis, hydrogenation, addition and substitution reactions, Cyclisation, cross-linking and vulcanization	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

		T	1
6	III	Graft and block copolymers - definition and reactions leading to the formation of graft and block copolymers	l -
7	III	Types of degradation - chemical degradation, physical degradation, biodegradable polymers, and mechanism of degradation, Thermal oxidation, photooxidation, mechanical degradation, degradation by ionizing radiation, ozone attack	Textbook of Polymer Science By Fred W. Billmeyer
8	III	Degradation of special polymers:	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
9	IV	Physical properties, stress-strain behaviour, mechanical properties (tensile, flexural, impact, fatigue, hardness, creep, abrasion), Electrical properties (dielectric strength, surface resistivity, volume resistivity, power factor, arc resistance)	W. Billmeyer
10	IV	Polymer processing - films sheets: moulding - compression, blow moulding, injection moulding and extrusion moulding, casting of films and calendaring, recycling of plastics, Elastomers - introduction, processing, rubber types, vulcanization, properties, reclaiming	W. Billmeyer
11	IV	Fibers - introduction, production, fiber	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
12	IV	Molecular weights of polymers - number average and weight average molecular weights, determination of molecular weight of polymers by viscometry, Gel Permeation Chromatography (GPC), membrane osmometry, vapour phase osmometry, ultracentrifugation, light scattering and Matrix-Assisted Laser Desorption Ionization (MALDI)	Textbook of Polymer Science By Fred W. Billmeyer

13	V	important polymers - synthesis, properties	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
14	V	Synthesis, properties and uses of polytetrafluoroethylene (Teflon), polystyrene, rayon, nylon, polyacrylates, polyvinyl chloride (PVA), polyacrylonitrile (PAN) and polystyrene-divinylbenzene	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer
15	V	Electrically conducting polymers - poly	Polymer Science By V.R. Gowariker, Textbook of Polymer Science By Fred W. Billmeyer

Auxilium College (Autonomous), Gandhi Nagar, Vellore–632 006

Lesson plan for the year 2020 – 2021

PCCHJ19 – SYNTHETIC ORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1		Organolithium compounds - preparation, reactions and uses (resemblance with Grignard reagent, difference from Grignard reagent)	, ,
2	III		K. Ahluwalia, Organic Organic

3	III		Reactions, Rearrangements and Reagents By S. N. Sanyal, Organic Reactions and their Mechanisms By P. S. Kalsi, Organic ChemistryBy Jonathan Clayden, Nick Greeves and Stuart Warren
4	III	Diisobutylaluminium hydride (DIBAL), 9-borabicyclo[3.3.1]nonane] (9BBN), Gilman's	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
5	III	Preparation and uses of phosphorous ylides	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
6	III	Preparation and uses of nitrogen and sulphur ylides	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
7	IV	Principles and synthetic process involving phase transfer catalysis - nitriles from alkyl halides, benzoyl cyanides from benzoyl chlorides	Techniques By V. K. Ahluwalia
8	IV	Preparation of alkyl fluorides from alkyl halides, alcohols from alkyl halides using PTC	
9	IV	Preparation of azides from alkyl halides, sodium alkyl sulphonates from alkyl halides using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia
10	IV	Preparation of alkyl nitrates, thiocyanates, cyanates and p-toluenesulphonates from alkyl halides using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia
11	IV	Preparation of aryl ethers and thioethers, esterification using PTC	Organic Synthesis: Special Techniques By V. K. Ahluwalia

12	IV	Diazotransfer by phase transfer catalyst, dihalocarbenes	Organic Synthesis: Special Techniques By V. K. Ahluwalia
13	V	Transition metal catalyzed reactions - reaction and mechanism of Heck reaction and Suzuki cross coupling reaction	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
14	V	Reaction and mechanism of carboxymethylation, hydro formylation and epoxide-allylic alcohol rearrangement	Organic Reactions and their Mechanisms By P. S. Kalsi, Advanced Organic Chemistry, Part B By Francis A. Carey and Richard J. Sundberg
15	V	Chemoselectivity - reduction and oxidation - examples, calculation	Comprehensive Organic Synthesis By D.Gelman, Comprehensive Heterocyclic Chemistry III By Katritzky

Auxilium College (Autonomous), Gandhi Nagar, Vellore–632 006

Lesson plan for the year 2020 - 2021

UACHA20-ALLIED CHEMISTRY I

Week	Unit	Portions to be covered	Reference
1		1 * * * * * * * * * * * * * * * * * * *	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl
2	I		Advanced Organic Chemistry By B.S.Bahl and Arun Bahl
3	I	1 '1 1	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl
4		1	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl

·	ı		1
5	I	Mechanism of halogenation and sulphonation	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl
6	I	Electrophilic substitution in benzene- mechanism of alkylation and acylation	B.S.Bahl and Arun Bahl, Advanced Organic Chemistry
7	III	Preparation and uses of polyethylene	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar
8	III	Preparation and uses of PVC	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar
9	III	Protein fibres	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar, Introduction to Polymer Chemistry By G.S.Misra
10	III	Protein fibres – chemical composition	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar, Introduction to Polymer Chemistry By G.S.Misra
11	III	Properties of wool	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar, Introduction to Polymer Chemistry By G.S.Misra
12	III	Properties of silk	Polymer Science By V. R. Gowariker, N. V. Viswanathan and Jayadev Sridhar, Introduction to Polymer Chemistry By G.S.Misra
13	V	1 '	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl
14	V	Azo and triphenylmethane dyes	Advanced Organic Chemistry By B.S.Bahl and Arun Bahl

1.5	3 7	December of model and a	A .1 1	0	C1	D
15	V	Preparation of methyl orange	Advanced	Organic	Chemistry	ву
			B.S.Bahl aı	nd Arun Ba	ahl	

Auxilium College (Autonomous), Gandhi Nagar, Vellore–632 006

Lesson plan for the year 2020 - 2021

Even Semester

PCCHF20 - GROUP THEORY AND QUANTUM CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	Introduction to quantum mechanics - black body radiation - distribution of energy in the black body radiation	
2	III	Rayleigh Jeans' and Planck's law of radiation	Quantum Chemistry By R. K. Prasad
3		Photoelectric effect, Bohr's quantum theory and subsequent developments - duality of electron	
4	III	Compton Effect	Fundamentals of Quantum Chemistry By R. Anantharaman
5	III	Quantum theory - quantum mechanical postulates — operators - definition, types of operators and Hermitian property	
6	III	Particle in a box model (one and two dimensional cases)	Quantum Chemistry By D. A. Mcquarrie
7	III	Particle in a box model (three dimensional case)	Quantum Chemistry By D. A. Mcquarrie
8	III	Schrodinger equation for hydrogen atom and He^+ ion	Quantum Chemistry By D. A. Mcquarrie

9	III	Origin of quantum numbers and their significance	Quantum Chemistry By R. K. Prasad
10	IV	One dimensional harmonic oscillator - classical treatment and quantum mechanical treatment	Quantum Chemistry By D. A. Mcquarrie
11	IV	Normalization and the characteristics of the Eigen functions of a harmonic oscillator	Quantum Chemistry By D. A. Mcquarrie
12	IV	The recursion formula for the Hermite polynomials, selection rules of the harmonic oscillator and space quantization of electronic orbitals	
13	IV		Quantum Chemistry By D. A. Mcquarrie
14	IV	Schrodinger wave equation and solution of particle in a ring	Quantum Chemistry By D. A. Mcquarrie
15	IV	Calculation of rotational constants and bond lengths of diatomic molecules	Quantum Chemistry By R. K. Prasad

Auxilium College (Autonomous), Gandhi Nagar, Vellore-632 006

Lesson plan for the year 2020 - 2021

PCCHN19 - SOLID STATE CHEMISTRY AND NUCLEAR CHEMISTRY

Week	Unit	Portions to be covered	Reference
1	III	(Luminescence and Phosphors)	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
2	III	Lasers (Ruby laser, Neodymium laser)	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore

3		reactions- Direct reactions	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
4			Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
5		isomerism and isomeric transition,	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
6		light and heavy elements	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
7	III		Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
8		isotope exchange and laser irradiation	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
9	III		Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
10	IV	-	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
11		Radioisotopes as traces	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
12	IV	,	Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
13	IV		Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore

14	IV	Age determination by tritium Solid State Chemistry and Its Application By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore
15	IV	Age determination by carbon-14 Solid State Chemistry and Its Application content By A.R. West and An Introduction to Solid State Chemistry By Smart & Moore

Auxilium College (Autonomous), Gandhi Nagar, Vellore-632 006

Lesson plan for the year 2020 - 2021

PECHG19 – ORGANOMETALLIC AND BIOINORGANIC CHEMISTRY

Week	Unit	Portions to be covered	Reference
1		Addition reactions - 1,2 addition to double bonds	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
2	III	Carbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
3	III	Decarbonylation	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
4	III	Oxidative addition reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
5	III	Reductive elimination reactions	Inorganic Chemistry By J. Huheey and Organometallic chemistry of transition metals By Robert H. Crabtree
6	III		Selected Topics in Inorganic Chemistry By Wahid U. Malik, G. D. Tuli, R. D. Madan

7	III	Insertion reaction	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
8	III		Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson and Organometallic chemistry of transition metals By Robert H. Crabtree
9	III		Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford
10	IV	Hydrogenation of olefins (Wilkinson's catalyst), modification of the original catalyst	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
11	IV		Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
12	IV	Oxidation of olefins to aldehydes and ketones (Wacker process)	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
13	IV	Cyclo oligomerisation of acetylene using Nickel catalyst (Reppe's catalyst)	Advanced Inorganic Chemistry By F. A. Cotton and G. Wilkinson, Inorganic Chemistry By J. Huheey
14	IV	Olefin isomerization and its mechanism	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford
15	IV	Olefin metathesis and Polymer bound catalyst	Inorganic Chemistry By M. C. Shriver, P. W. Atkins, C. H. Langford

Lesson plan for the year 2020-2021

UACHB20-ALLIED CHEMISTRY II

Week	Unit	Portions to be covered	Reference
1	I	Co-ordination chemistry – definition of the terms - ligands, chelate, chelation	Modern Inorganic Chemistry By R.D.Madan
2	I	Nomenclature of mononuclear complexes	Modern Inorganic Chemistry By R.D.Madan
3	I	Werner's and Pauling theory, Sidgwick's theory	Modern Inorganic Chemistry By R.D.Madan
4	I	Effective Atomic Number rule	Modern Inorganic Chemistry By R.D.Madan
5	I	Chemistry of EDTA	Modern Inorganic Chemistry By R.D.Madan
6	I	Chemistry of haemoglobin and chlorophyll	Modern Inorganic Chemistry By R.D.Madan
7	II	Isomerism- types of isomerism	Modern Inorganic Chemistry By R.D.Madan
8	II	Stereoisomerism-optical isomerism - cause of optical activity	Modern Inorganic Chemistry By R.D.Madan
9	II	Optical isomerism of lactic acid and tartaric acid, R- S notation (one asymmetric carbon atom)	Advanced Organic Chemistry By B.S.Bahl and ArunBahl
10	II		Advanced Organic Chemistry By B.S.Bahl and ArunBahl
11	II	Geometrical isomerism of maleic and fumaric acids, E-Z notation	Advanced Organic Chemistry By B.S.Bahl and ArunBahl

12	II		Advanced Organic Chemistry By B.S.Bahl and ArunBahl
13	V	Medicinal chemistry - definition and A one example each for analgesics, B antipyretics antiseptics, tranquilizers, sedatives and hypnotics	· ·
14	V	_	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh
15	V	Antibiotics – structure and uses of A Penicillin, Streptomycin and B Chloramphenicol	A Textbook of Pharmaceutical Chemistry By Jayashree Ghosh